![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Барометрическая формула. Закон распределения Больцмана.
При выводе основного уравнения молекулярно-кинетической теории газов предполагалось, что на молекулы газа внешние силы не действуют, поэтому молекулы равномерно распределены по объему. Если газ находится в силовом поле, то существуют силы, которые сообщают хаотически движущимся молекулам направленное движение. Молекулы газа, находящиеся в поле тяготения, участвуют в тепловом движении и испытывают действие силы тяжести. Тяготение и тепловое движение приводят к состоянию газа, при котором наблюдается убыль концентрации и давления газа с возрастанием высоты над землей.
Выведем закон изменения давления с высотой, предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова и равна m0.
Атмосферное давление на некоторую площадку S обусловлено весом столба воздуха над этой площадкой (т.е. действием силы тяжести) (рис.6.8). Пусть на высоте h – давление р, а при h=0 – p=p0. Рассмотрим изменение давления элемента “столба” высотой dh, в пределах которого концентрацию можно считать постоянной. Убыль давления в пределах dh:
Но
Произведя разделение переменных:
Если учесть, что
Зависимость (6.7.4) давления атмосферы от высоты над уровнем моря при постоянной температуре называют барометрической формулой. Пользуясь барометрической формулой
Полученное распределение Больцмана справедливо для поля тяготения, для которого
Данное выражение является распределением Больцмана в поле с потенциальной энергией U . При Т® ¥, n®n0, то есть происходит выравнивание концентрации газа по всему объему, занимаемому газом. При Т® 0, n® 0, то есть все молекулы опустятся на поверхность Земли (если речь идет об атмосфере).
|