![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Однофакторный дисперсионный анализ
Методы дисперсионного анализа позволяют формировать единую базу данных объектов-аналогов и оценивать величину влияния конкретных факторных признаков на исследуемый результативный признак. Основная идея однофакторного дисперсионного анализа заключается в сравнении дисперсии исследуемого признака, вызванной действием фактора, с дисперсией ошибок измерения этого признака. Если различие между ними значимо, то фактор оказывает существенное влияние на исследуемый признак. Для сравнения влияния факторных признаков на результативный признак необходим определенный статистический материал – каждому уровню фактора должна соответствовать определенная выборка значений результативного признака. Статистический материал удобно представлять в виде таблицы 2.1. Общее число наблюдений Прежде чем судить о количественном влиянии фактора, необходимо установить наличие такого влияния. Возможно, расхождение значений результативного признака для различных уровней фактора объясняется действием чистой случайности. Т а б л и ц а 2.1 Матрица экспериментов для однофакторного анализа
На статистическом языке это предположение означает проверку однородности всех выборок таблицы 2.1, т.е. проверку принадлежности всех значений результативного признака одной генеральной совокупности. Основной процедурой дисперсионного анализа является проверка этой гипотезы с помощью статистических критериев. Пусть фактор Чем существеннее влияние фактора на признак Существуют понятия: · общая сумма квадратов - сумма квадратов отклонений всех возможных значений признака от их общего среднего значения
· сумма квадратов между группами или по факторам - взвешенная сумма квадратов отклонений средних значений по группам от общего среднего значения
· сумма квадратов внутри групп - сумма квадратов отклонений возможных значений признака каждой группы (уровня фактора) от среднего значения этой группы
где
Для оценки влияния фактора следует разложить общую сумму квадратов на составляющие: сумму квадратов между группами (по факторам) и сумму квадратов внутри групп. Следовательно,
Сумма Суммы квадратов
Первая оценка называется общей оценкой дисперсии (или выборочной дисперсией), вторая – оценкой дисперсии по факторам (оценкой дисперсии между группами или факторной дисперсией) и третья – остаточной оценкой дисперсии (оценкой дисперсии внутри групп или остаточной дисперсией). Число степеней свободы представляет собой число независимых отклонений значений признака от его среднего значения. Сумма Если факторная дисперсия Проверка значимости оценок дисперсии выполняется с помощью
Если расчетное значение критерия окажется меньше критического, то нет оснований считать, что рассматриваемый фактор влияет на изменчивость средних значений случайной величины. Если После того как выполнена оценка влияния фактора на изменчивость средних значений случайной величины в целом и установлено, что фактор влияет на изменчивость средних значений, то переходят к подробному исследованию отдельных уровней фактора. Для этого проводится оценка расхождения средних значений, полученных при наблюдениях по отдельным уровням фактора. Для сравнения двух выборочных средних используют
Критическое значение Пример 2.1[5].Две группы дилеров продают автомобили, которые рекламируются соответственно рекламами Требуется определить влияние двух видов рекламы на объем продаж автомобилей. Т а б л и ц а 2.2 Сводка исходных данных
Для пояснения методики однофакторного дисперсионного анализа выполнен контрольный расчет.
|