КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Теоретическое введение. Соленоид представляет собой катушку, по виткам которой течет токСоленоид представляет собой катушку, по виткам которой течет ток. Этот ток создает магнитное поле. О причинах возникновения магнитного поля и его свойствах прочитайте в работе 26. Наиболее простой вид картины силовых линий будет в случае бесконечно длинного соленоида. Опыт показывает, что чем длиннее соленоид, тем меньше индукция магнитного поля вне его. Для бесконечно длинного соленоида магнитное поле снаружи отсутствует вообще, а внутри его линии вектора направлены вдоль его оси, причем линии вектора составляют с направлением тока правовинтовую систему. Магнитное поле в точках на оси соленоида конечной длины можно рассчитать, используя закон Био-Савара-Лапласа: Индукция магнитного поля , созданного длинным проводом произвольной конфигурации, по которому течет ток I , равна векторной сумме индукций магнитных полей , созданных каждым элементом длины этого провода , (1) где – элемент тока, – радиус-вектор, проведенный от этого элемента до точки, в который определяем магнитное поле. Как видно из формулы, поле перпендикулярно плоскости, в которой лежат радиус-вектор и элемент тока. Модуль индукции, создаваемой элементом тока находится по формуле , (2) где – угол между радиус-вектором и элементом тока. Использование этого закона дает формулу , (3) где I – ток в соленоиде, N – полное число витков в соленоиде, – его длина, r- радиус соленоида, а – расстояние от края соленоида до той точки, в которой определяется значение магнитной индукции, . (4) Если длина катушки в 5 раз превосходит ее диаметр, то магнитное поле на оси ее почти совпадает с полем бесконечно длинного соленоида. Для определения магнитного поля на оси бесконечно длинного соленоида удобнее воспользоваться теоремой о циркуляции вектора . Циркуляция вектора индукции магнитного поля по любому замкнутому контуру равна алгебраической сумме всех токов, охватываемых этим контуром, умноженной на магнитную постоянную , где – элемент длины контура, по которому считают циркуляцию. Следует помнить, что , где – угол между векторами и . Если токи текут в разных направлениях, то положительным считают тот, направление которого связано с направлением обхода контура правилом правого винта. Из симметрии магнитного поля соленоида следует, что контур, по которому будем считать циркуляцию ,следует выбрать прямоугольный. Тогда на участке 1–2 угол , а на участках 2–3 и 4–1 угол . На участке 3–4 (вне соленоида) индукция магнитного поля . Тогда выражение (4) преобразуется в , где N – число витков соленоида, охваченных выбранным контуром. Из выражения (4) следует или , где – число витков, приходящихся на единицу длины соленоида. Экспериментальное изучение распределения магнитной индукции поля внутри соленоида предлагается провести с помощью установки состоящей из источника постоянного тока G; соленоида L1 магнитное поле которого исследуется; маленькой измерительной катушки L2, которая введена в соленоид и может перемещаться вдоль его оси; баллистического гальванометра Р2, соединенного с катушкой L2; выключателя S и миллиамперметра P1, с помощью которого можно измерить ток в соленоиде. При измерении индукции магнитного поля измерительную катушку устанавливают в какой-либо точке на оси соленоида. В момент замыкания кнопки S цепи соленоида L1 ток в нем возрастает от 0 до постоянного значения I . При этом магнитный поток через витки катушки L2 изменяется от 0 до , где - площадь сечения соленоида, – число витков в катушке L2. Изменение магнитного потока приводит к возникновению в катушке L2 электродвижущей силы индукции и появлению в цепи катушки L2 индукционного тока i. В результате этого световой зайчик гальванометра смещается на угол , пропорциональный количеству электричества , протекшего через измерительную часть установки. Этот угол равен , где b – баллистическая постоянная гальванометра. Если полное сопротивление цепи электрической катушки L2 равно R , то ток в ней и поэтому . Тогда для магнитной индукции имеем или , (6) где постоянная принимается за цену деления баллистического гальванометра. По формуле (6) определяются экспериментальные значения магнитной индукции поля на оси соленоида.
|