КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Значения коэффициентов Стьюдента
Например, задавая доверительную вероятность δ =0.95, по числу проведенных измерений n=5 по табл. 2 можно найти = 2,78. Тогда, определив предварительно по формуле (35), найдем погрешность ∆X: (41) Выражение (41) ввиду малого объема информации дает границы доверительного интервала более широкими. Результат измерения можно представить в виде: при δ=0,95, n=5. (42) Конечно, оценка (42) еще не дает представления об общей погрешности измерения, в которую входит и систематическая ошибка. Совместный учет случайных и систематических ошибок можно произвести по формуле При этом следует принять во внимание, что всегда имеет максимальное значение. Максимальное же значение случайных ошибок равно 3σ . Следовательно, для их равноправного учета необходимо предположить, что приборная погрешность β (или ∆пр) равна утроенной дисперсии распределения погрешностей прибора 3σпр ,т.е. погрешности соответствующей надежности δ =0.997. Тогда за систематическую ошибку можно принять и общая погрешность выразится соотношением (43) Коэффициенты Стьюдента для проведенного числа измерений и бесконечного числа измерений находят по табл.2 для одной и той же заданной надежности δ.
|