КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Основное уравнение гидростатики в дифференциальной форме.Умножим каждое из уравнений, входящих в (3.1) на dx, dy и dz соответственно и просуммируем их, что даст (3.3) Выражение, стоящее в скобках во втором члене уравнения, есть не что иное, как полный дифференциал давления - dp, поэтому можем записать (3.4) Это уравнение называют основным уравнением гидростатики в дифференциальной форме. В левой части его - полный дифференциал, поэтому и правая часть также должна быть полным дифференциалом. Следовательно, силы и плотность должны быть такими функциями x, y и z, чтобы они обращали правую часть (3.4) в полный дифференциал. Если этого не происходит, то равновесие жидкости невозможно. Другими словами, если жидкость находится в состоянии равновесия, то правая часть (3.4) является полным дифференциалом какой-то функции . Считая плотность постоянной ( ), можем записать (3.5) Из теоретической механики известно, что скалярное произведение силы на элементарное перемещение частицы называют элементарной работой, т.е. (3.6) Силы, работа которых не зависит от пути движения, а только от начального и конечного положений, называют потенциальными. При этом для того, чтобы работа силы не зависела от пути движения, необходимо и достаточно, чтобы выражение для элементарной работы, т.е. (3.6), было полным дифференциалом некоторой скалярной функции P, называемой силовой. Взятая с противоположным знаком, она называется потенциалом. Таким образом, рассмотренную выше функцию можно назвать силовой функцией, а (3.4) представить как (3.7) Из чего следует, что несжимаемая жидкость может находиться в равновесии только под действием сил, имеющих потенциал.
|