Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Уравнение неразрывности (сплошности).




Уравнение неразрывности либо сплошности выражает один из фундаментальных законов природы - закон сохранения массы применительно к жидкой среде.

Рассмотрим объем V, ограниченный поверхностью S (рис. 4.2). Выделим элемент поверхности dS. Пусть - орт внешней нормали, а - вектор скорости. Через выделенный элемент dS в единицу времени внутрь объема проникает масса жидкости

.

Рис. 4.2

(знак минус, т.к. направления и противоположны). Секундная масса, проникающая в объем через всю поверхность,

.

С другой стороны, приток жидкости в объем приводит к изме­нению ее массы. При этом, поскольку выделенный объем является постоянным, изменение массы может происходить только за счет изменения ее плотности. Скорость изменения массы можно представить как

,

либо с учетом того, что , можно записать

.

Очевидно, что изменение массы внутри объема должно быть равно массе, поступившей в него извне, т.е.

Применяя преобразование Гаусса-Остроградского, получим:

, либо

.

Равенство нулю интеграла возможно лишь при условии

. (4.3)

Это и есть уравнение неразрывности. Поскольку при выводе его не делалось никаких ограничений, то оно справедливо как для установившегося, так и для неустановившегося движений сжимаемой и несжимаемой жидкости. Уравнение (4.3) относится к числу фундаментальных уравнений механики жидкости.

Рассмотрим некоторые частные случаи. При установившемся движении все производные по времени равны нулю, что следует из самого определения этого понятия, поэтому

. (4.4)

Если движение установившееся и жидкость несжимаема, т.е. , то

. (4.5)

Либо в проекциях на декартовы оси координат (см. формулу 1.7)

. (4.6)

Установим физический смысл этого соотношения. Частные производные , , характеризуют скорость относительного удлинения (укорочения) жидкой частицы. Если этот процесс происходит одновременно вдоль всех координатных осей, то он приводит к объемному расширению либо сжатию частицы. Ясно, что если частица удлиняется вдоль осей x и y, то она должна укорачиваться относительно оси z. Другими словами, хотя бы одна из производных, входящих в (4.6), должна быть отрицательна, т.к. в противном случае соотношение не может быть равным нулю.

Как уже отмечалось в 1.1, поле, в котором , носит название соленоидального.


Поделиться:

Дата добавления: 2014-11-13; просмотров: 203; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты