КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Преобразование Громеки-Лэмба.Рассмотрение теоремы Гельмгольца о движении жидкой частицы показывает, что жидкость как любое материальное тело может участвовать в поступательном и вращательном движениях. Следует обратить внимание на то, что для совершения работы в современных технических устройствах может использоваться только энергия поступательного движения. Энергия же вращательного (вихревого) движения полностью теряется, рассеивается в окружающей среде, превращаясь в теплоту. Система уравнений Эйлера (7.4) не учитывает факт существования этих двух движений, что в определенной степени обедняет ее. Поэтому целесообразно использовать преобразование, позволяющее учесть эту особенность движения жидких частиц, называемое преобразованием Громеки-Лэмба. Формально оно сводится к тому, что в выражение для ускорения вводятся члены, характеризующие вращение жидких частиц. Рассмотрим лишь одну компоненту: (7.3) Прибавим и вычтем в конвективной части ускорения выражение Скомпонуем члены с учетом знаков: Выражения в скобках есть не что иное, как удвоенные компоненты вихря и , т.е. можем записать Подставляя полученные значения в (7.3) имеем (7.4) и по аналогии (7.5) (7.6) В векторной форме выражение для ускорения будет иметь вид: (7.7) Если движение установившееся, то (7.8)
|