КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Бесциркуляционное обтекание круглого цилиндра.Продолжим рассмотрение метода наложения потоков. Полученное в примере 6.5 течение, называемое диполем, на первый взгляд носит достаточно абстрактный характер. Однако, как будет показано ниже, такая точка зрения не совсем справедлива. Используя понятие диполя, можно получить весьма интересные и полезные для практических приложений результаты. Для подтверждения этого проанализируем течение, возникающее при наложении прямолинейного поступательного потока на диполь с центром, расположенным в начале координат. Прямолинейный поток движется вдоль оси Ox со скоростью, равной единице, т.е. ; . Потенциал скорости и с точностью до произвольной постоянной. Функция тока и . Если, как принято в условии, , то и . Примем для упрощения выкладок момент диполя , тогда и . Складывая потенциалы и функции тока, получаем и . Найдем линии тока, для чего приравняем функцию тока постоянной: , откуда (6.33) Из чего следует, что линии тока течения представляют семейство кривых третьего порядка. Найдем нулевую линию тока, т.е. линию, для которой . Это дает два уравнения: и , т.е. линия тока представляет собой ось x-ов и окружность единичного радиуса с центром в начале координат (см. рис. 6.12). Это позволяет рассматривать окружность как твердую границу и течение вне ее, что приводит к задаче обтекания бесконечно длинного цилиндра.
Покажем, что на достаточно большом удалении от цилиндра скорость направлена вдоль оси x и равна . Найдем проекции скоростей и . Имеем: , Откуда ; аналогично . Для дальнейшего удобно перейти к полярным координатам, имея в виду, что и . Подстановка этих значений в выражения для и дает: (6.34) (6.35) Перейдем к пределу. При получаем и , т.е. то, что и требовалось доказать. Точки B и A, показанные на рис. 6.12, являются так называемыми особыми либо критическими точками, т.к. скорость в них обращается в нуль. Покажем, что это действительно так, для чего запишем выражение для потенциала скорости в полярных координатах: ; (6.36) Найдем проекции скорости в произвольной точке на произвольной линии тока (рис. 6.13). Имеем: ; . На поверхности цилиндра и , т.е. обтекание безотрывно. Компонента . В общем случае, когда , (6.37)
Знак «минус» указывает на то, что направление скорости на верхней половине цилиндра противоположно положительному направлению отсчета угла . В точках B и A ( ) скорости равны нулю, т.е. действительно эти точки являются критическими.
|