![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Функция тока плоского течения.
В практических задачах гидромеханики двумерных потоков широчайшее применение находит понятие о функции тока. Рассмотрим двумерный поток и ограничимся несжимаемой жидкостью. Как было показано, дифференциальное уравнение линии тока имеет вид либо
Запишем уравнение неразрывности для этого случая, которое будет иметь вид
Аналогично тому, как это делалось при рассмотрении потенциала скорости, поставим вопрос об условиях необходимых и достаточных для того, чтобы выражение (6.10) являлось полным дифференциалом какой-то скалярной функции. Применим к (6.10) условия Клеро (равенство взятых накрест производных). Имеем:
Но это есть не что иное, как уравнение неразрывности (6.11) для плоского потока, которое удовлетворяется всегда, если только движение существует. Следовательно, можно записать:
где
Сопоставляя (6.12) и (6.13), получаем
Из чего следует, что если функция тока течения известна, то можно определить компоненты скорости в любой точке пространства. Сопоставляя (6.10) и (6.12) приходим к выводу, что если частица движется вдоль линии тока, то функция тока остается постоянной (при Для плоского потенциального течения
откуда
Таким образом, функция тока, как и потенциал скорости, является гармонической функцией. И еще одно важное обстоятельство. Если потенциал скорости существует только в потенциальном потоке, то функция тока этим условием не ограничена. Это объясняется тем, что уравнение неразрывности, которое используется для получения этого понятия, справедливо как для вихревого, так и для безвихревого движений.
|