Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Теорема Стокса.




Читайте также:
  1. II закон термодинамики. Теорема Карно-Клаузиуса
  2. II. (Теорема Больцано-Вейерштрасса).
  3. Б) теория фирмы и транзакционных издержек. Теорема Р.Г.Коуза (1910)
  4. Движение тела в неинерциальных системах отсчета. Теорема Кориолиса. Силы инерции.
  5. Занятие 3. Условная вероятность. Теорема умножения вероятностей.
  6. Занятие 4. Теорема сложения вероятностей.
  7. Интегральная теорема Муавра – Лапласа.
  8. Кинетическая энергия тела, системы тел при их поступательном движении. Теорема о кинетической энергии. Теорема Кенига.
  9. Кодирование источника. Теорема Шеннона для канала без помех. Эффективные коды, принципы эффективного кодирования.
  10. Консервативные силы и потенциальные поля. Потенциальная энергия тела. Теорема о потенциальной энергии.

В движущейся жидкости рассматриваем вихревое поле и выделяем в нем малый замкнутый контур со сторонами dx и dy (рис. 5.5). Пусть в начале координат скорости будут и . Запишем выражение для элементарной циркуляции по этому контуру, имея в виду, что поток двумерный: .

Рис. 5.5

Рассмотрим контур OABC. Если вдоль OA скорость , то вдоль CB ее приращение составит , и аналогично вдоль AB - . Это следует из выражения для полного дифференциала скорости, например, .

Запишем теперь выражение для элементарной циркуляции вдоль контура OABCO. Имеем:

Раскрывая скобки и выполнив сокращения, получаем

Из чего следует, что циркуляция по бесконечно малому замкнутому контуру равна интенсивности вихря, пронизывающего этот контур.

Этот вывод легко обобщить и на случай произвольной кривой конечных размеров (см., например, Аржаников Н.С. и Мальцев В.Н. Аэродинамика. - М.: Оборонгиз, 1956 - 483 с.; упомянутую выше книгу Н.Я.Фабриканта).

Таким образом, можем записать:

(5.14)

Это и есть формула Стокса, показывающая, что циркуляция по произвольному контуру равна сумме интенсивностей (напряжений) вихрей, пронизывающих поверхность, натянутую на контур.

 


Дата добавления: 2014-11-13; просмотров: 20; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты