КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Линейные деформации.Очевидно, что линейные деформации частицы (рис. 4.8) могут возникнуть в результате различия в скоростях, совпадающих с направлением ребер. Как и ранее, компоненты скорости в точке A - , , . Вдоль оси x: Точка A:
Точка D: Разность скоростей, вызывающая удлинение ребра AD: . Удлинение частицы за время dt (4.28) Относительное удлинение (4.29) Скорость относительного удлинения (4.30) Аналогично для других осей ; Если процесс происходит одновременно вдоль всех осей, то это приводит к объемному расширению либо сжатию частицы. Таким образом, объемная деформация сводится к изменению первоначального объема параллелепипеда на величину за счет растяжения либо сжатия ребер. При этом , и с учетом (4.28) . Аналогично и . Таким образом Скоростью относительной объемной деформации назовем отношение изменения объема к его первоначальному объему и скорости деформации, т.е. . Если , то это означает, что , т.е. деформация жидкой частицы происходит без изменения ее объема. В этом и заключается гидромеханический смысл равенства нулю дивергенции. Полученную выше связь между поступательной и вращательной скоростями жидкой частицы можно получить и более коротким путем, представляющим определенный интерес. Разные подходы к одному и тому же вопросу способствуют углубленному пониманию. Поэтому рассмотрим этот путь. Пусть жидкая частица вращается вокруг оси z с угловой скоростью . Запишем выражение для ротора в проекциях на оси координат (см. формулу 1.8). Имеем:
Рассмотрим точку M на жидкой частице (рис. 4.10). Линейная скорость этой частицы . Запишем выражения для проекций скоростей на оси координат: ; ; Откуда находим ; .
Таким образом Аналогично для двух других компонент ; Либо в векторной форме что полностью совпадает с (4.26). Движение, при котором называют вихревым, при - безвихревым либо потенциальным. Из чего следует, что если течение вихревое, то движение жидких частиц происходит с вращением.
|