КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Гипотеза линейности .Применим закон Ньютона к жидкости, движущейся параллельно плоскости xOy (рис. 8.1), что дает Воспользуемся результатом, полученным при рассмотрении теоремы Гельмгольца о движении жидкой частицы. Согласно теореме, скорость угловой деформации относительно оси y Так как движение происходит в плоскости xOy, то и и, следовательно, касательное напряжение (8.1)
Полученный результат иллюстрирует так называемый закон трения Стокса. Согласно этому закону, напряжения, возникающие в жидкости, в отличие от твердого тела, пропорциональны не величинам, а скоростям деформаций, и связаны с ними линейной зависимостью. При этом коэффициент пропорциональности остается неизменным и равным 2. Кроме того, согласно закону Стокса касательные напряжения, как показано выше, пропорциональны скоростям угловой деформации, а нормальные - скорости линейной деформации, т.е. , , . Таким образом, можем записать (8.2) и т.д. Рассмотрим теперь нормальные напряжения, возникающие от сил вязкости. Согласно закону Стокса, их можно записать в виде так называемых девиаторов напряжения, имеющих вид: (8.3) Полные нормальные напряжения отличаются тем, что помимо записанных выше в любой, как в вязкой, так и в невязкой жидкости, действуют и статические давления. Другими словами (8.4) Выполним следующую операцию: из утроенной величины вычтем сумму ( ). Это дает: откуда найдем В качестве давления в вязкой жидкости принимают среднее арифметическое, т.е. . И, следовательно, (8.5) Для несжимаемой жидкости , и выражения упрощаются.
|