КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Понятие о способах получения отливок из литейных
Способы литья. Отливкой называют литую деталь или заготовку, полученную заливкой расплавленного металла (расплава) в литейную форму, полость которой имеет конфигурацию детали или заготовки. Около 50% всех деталей в машинах и оборудовании изготовляют литьем. Способы литья отливок можно разделить на две группы. К первой относят способы получения отливок в разовых формах, заполняемых расплавом однократно, после чего их разрушают для извлечения отливки (литье в песчаные сухие или сырые формы, литье в оболочковые формы и др.). Ко второй группе относят способы получения отливок в многократных металлических формах, заполняемых расплавом от нескольких сотен до десятков тысяч раз (центробежное литье, литье в кокиль, под давление и др.). Каждый из перечисленных способов изготовления отливок имеет свое назначение и область применения, которая определяется объемом производства, требованиями к отливкам по точности и шероховатости поверхности, технологическими свойствами литейных сплавов, технико-экономическими показателями. При выплавке литейных сплавов в плавильные печи загружают металлическую шихту, ферросплавы, лигатуры и флюсы. Металлическая шихта — слитки технически чистых металлов, лом, отходы производства. Лигатура — вспомогательный сплав, вводимый в расплавленный металл с целью восполнения угарающих в процессе плавки химических элементов. Например, для выплавки чугуна и стали лигатурой служат ферросплавы (ферромарганец, ферросилиций и др.), которые одновременно раскисляют металл. Флюсы служат для образования шлака с требуемыми физико-химическими свойства ми (для плавки чугуна и стали флюсом служит известняк). Шлак предохраняет в процессе плавки металл от окисления, служит для удаления неметаллических включений, попадающих в металл вместе с шихтой и образующихся в процессе плавки. Для улучшения свойств литейных сплавов в процессе плавки, после плавки, в литейном раздаточном ковше или непосредственно в литейной форме производят модифицирование, легирование и рафинирование. Модифицирование — введение в жидкий сплав после его плавки в сотых или десятых долях процента добавок — модификаторов, которые служат дополнительными центрами кристаллизации, обеспечивают более мелкозернистое строение сплава и более высокие его механические свойства. Для чугуна и стали модификаторами являются силикокальций, ферросилиций и др. Легирование — введение в жидкий сплав различных добавок химических элементов (Сг, N1, Си, Mo, Va, W, T1, Со и др.) для придания сплаву особых свойств (жаропрочности, износостойкости, коррозионной стойкости и т. п.) за счет изменения его внутреннего строения. Рафинирование — очистка сплавов от ненужных и вредных примесей. Удаление вредных примесей (серы и фосфора) из чугуна и стали выполняют рафинированием их марганцем и известняком.
Чугуны Влияние компонентов на свойства чугунов. Чугун отличается от стали более высоким содержанием углерода, лучшими литейными свойствами. Он не способен в обычных условиях обрабатываться давлением и дешевле стали. В чугунах имеются примеси кремния, марганца, фосфора и серы. Чугуны со специальными свойствами содержат легирующие элементы — никель, хром, медь, молибден и др. Примеси, находящиеся в чугуне, влияют на количество и строение выделяющегося графита. Механические свойства отливок из чугуна зависят от его структуры. Чугуны имеют следующие структурные составляющие: графит, феррит, перлит, ледебурит и фосфидную эвтектику. По микроструктуре чугуны делят на белый чугун I (рис. 23), содержащий ледебуритный цементит Ц и перлит П; серый перлитный чугун II, содержащий перлит П и графит Г; серый ферритный чугун III, содержащий феррит Ф и графит Г. В ферритном чугуне весь углерод находится в свободном состоянии в виде графита. Существуют чугуны с промежуточными микроструктурами: половинчатый Па, в котором имеются перлит, ледебуритный цементит и графит; перлитно-ферритный Пб, содержащий феррит, перлит и графит; высокопрочный IV — перлит и шаровидный графит.
Рис. 5.5. Микроструктуры чугуна
На образование той или иной микроструктуры чугуна большое влияние оказывают его химический состав и скорость охлаждения отливки. Углеродв обычных серых чугунах содержится в количестве от 2,7 до 3,7%. Выделение графита увеличивается с повышением содержания углерода в чугуне. Во всех случаях пределы содержания углерода принимают: нижние — для толстостенных, а верхние — для тонкостенных отливок. Совместное влияние углерода и кремния на структуру чугуна представлено на диаграмме (рис. 24, а). На диаграмме по линии абсцисс отложено содержание в чугуне кремния на оси ординат — содержание углерода. Диаграмма сплошными линиями делится на пять областей. Обозначение областей соответствует структурам чугуна, приведенным на рис. 23. Используя эту диаграмму, можно определить процентное содержание углерода и кремния для получения отливок с толщиной стенок 50 мм и обходимой микроструктурой. Существенное влияние на образование структуры чугуна оказывает скорость охлаждения отливки, которая становится тем меньше, чем больше толщина стенки отливки. С увеличением скорости охлаждения отливки количество цементита в структуре чугуна возрастает, а с уменьшением ее в структуре чугуна увеличивается содержание графита. Поэтому при одном и том же химическом составе чугуна отливка, имеющая разную толщину стенок, будет иметь разную микроструктуру, а следовательно, и механические свойства. На рис. 24, б показано совместное влияние углерода и кремния (ось ординат) и толщины стенки отливки (ось абсцисс) на структуру чугуна. Обозначение областей на этой диаграмме также соответствует структурам, приведенным на рис. 23, и областям рис. 24, а. Марганец растворяется в чугуне, образуя твердые растворы с ферритом и цементитом. Марганец в некоторой степени препятствует графитизации чугуна. Марганец нейтрализует вредное влияние серы на чугун. Содержание марганца в сером чугуне составляет обычно 0,5—0,8%. Увеличение содержания марганца до 0,8—1,0% приводит к повышению механических свойств чугуна, особенно в отливках с тонкими стенками. Фосфорне оказывает практического влияния на процесс графитизации чугуна. В количестве 0,1—0,3% фосфор находится в твердом чугуне в растворенном состоянии. Фосфор повышает хрупкость, так как в чугунах с содержание фосфора около 0,5—0,7% образуется тройная фосфидная эвтектика (Fе + FезР + FезС) с температурой плавления 950°С, которая выделяется в виде хрупкой сплошной сети по границам зерен. Фосфор повышает жидкотекучесть и износостойкость, но ухудшает обрабатываемость чугуна. Для ответственных отливок содержание фосфора допускается до 0,2—0,3%. Отливки, предназначенные для работы на истирание, могут содержать до 0,7—0,8% фосфора, тонкостенные отливки и отливки художественного литья — около 1 % фосфора. Сера является вредной примесью, образует при затвердевании сернистое железо (FeS), ухудшает литейные свойства чугуна (снижает жидкотекучесть, увеличивает усадку и повышает склонность к образованию трещин). Сернистое железо образует с железом легкоплавкую эвтектику .(Fe+iFeS), которая плавится при температуре 988°С. Эвтектика затвердевает в последнюю очередь и располагается между зернами, приводя к \хрупкости и понижению прочности чугуна при повышенных температурах, т. е. к красноломкости. Добавкой марганца в количестве, в 5—7 раз превышающем содержание серы, нейтрализуют ее вредное влияние. Сера образует с марганцем сернистый марганец MnS, который находится в расплавленном чугуне в твердом состоянии, поскольку плавится при 1620°С. Большая часть образующегося сернистого марганца переходит из жидкого чугуна в шлак. Содержание серы в чугуне ограничивается до 0,12%, а в высокопрочных должно быть не более 0,03%. Легирующие элементы (Сг, Ni, Mo, Ti, Mn, Cu и др.) улучшают свойства чугуна. Хром и никель для легирования чугуна обычно применяют совместно. В результате легирования чугуна перлит размельчается или образуются другие, еще более тонкие структуры. Белый чугун. Серый и белый чугуны резко различаются по свойствам. Белые чугуны очень твердые и хрупкие, плохо обрабатываются режущим инструментом, идут на переплавку в сталь и называются передельными чугунами. Часть белого чугуна идет на получение ковкого чугуна. Серые чугуны — это литейный чугун. Серый чугун поступает в производство в виде отливок. Серый чугун является дешевым конструкционным материалом. Он обладает хорошими литейными свойствами, хорошо обрабатывается резанием, сопротивляется износу, обладает способностью рассеивать колебания при вибрационных и переменных нагрузках. Свойство гасить вибрации называют демпфирующей способностью. Демпфирующая способность чугуна в 2— 4 раза выше, чем стали. Высокая демпфирующая способность и износостойкость обусловили применение чугуна для изготовления станин различного оборудования, коленчатых и распределительных валов тракторных и автомобильных двигателей и др. В соответствии с ГОСТ 1412—80 выпускают следующие марки серых чугунов (в скобках указаны числовые значения твердости НВ): QH 10 (143—229), СЧ 15 (163—229), СЧ 20 (170-241), СЧ 25 (180—250), СЧ 30 (181—255), СЧ 35 (197-269), СЧ 40 (207—285), СЧ 45 (229—289). Серый чугун получают при добавлении в расплавленный металл веществ, способствующих распаду цементита и выделению углерода в виде графита. Для серого чугуна графитизатором является кремний. При введении в сплав кремния около 5% цементит серого чугуна практически полностью распадается и образуется структура из пластичной ферритной основы и включений графита. С уменьшением содержания кремния цементит, входящий в состав перлита, частично распадается и образуется ферритно-перлитная структура с включениями графита. При дальнейшем уменьшении содержания кремния формируется структура серого чугуна на перлитной основе с включениями графита. Механические свойства серых чугунов зависят от металлической основы, а также; формы и размеров включений графита. Наиболее прочными являются серые чугуны на перлитной основе, а наиболее пластичными — серые чугуны на ферритной основе. Поскольку графит имеет очень малую прочность и не имеет связи с металлической основой чугуна, полости, занятые графитом, можно рассматривать как пустоты, надрезы или трещины в металлической основе чугуна, которые значительно снижают его прочность и пластичность. Наибольшее снижение прочностных свойств вызывают включения графита (рис. 25, а) в виде пластинок, наименьшее — включения точечной или шарообразной формы.
Рис. 5.6. Микроструктура чугуна с различной формой графита: а — пластинчатый графит в сером чугуне, б - шаровидный графит в высокопрочном чугуне, в — хлопьевидный графит в ковком чугуне
По физико-механическим характеристикам серые чугуны условно можно разделить на четыре группы: малой прочности, повышенной прочности, высокой прочности и со специальными свойствами. А) серый чугун малой прочности имеет в основе микроструктуру феррита или феррита и перлита с пластинчатым графитом (рис. 25, а). Такой чугун обладает прочностью на растяжение 300 МПа, и соответствует маркам до СЧ 30. В марке буквы сокращенно обозначают наименование чугуна, а следующая за ними двухзначная цифра — предел прочности на растяжение. Б) серый чугун повышенной прочности имеет перлитную основу и более мелкое, завихренное строение графита. Он соответствует маркам от СЧ 35 до СЧ 40. Прочность этих чугунов обеспечивается легированием и модифицированием чугуна. Легированный серый чугун имеет мелкозернистую структуру и лучшее строение графита за счет присадки небольших количеств никеля и хрома, молибдена, а иногда титана или меди. Модифицированный серый чугун имеет однородное строение по сечению отливки и более мелкую завихренную форму графита. Химический состав шихты для изготовления модифицированного чугуна подбирают таким, чтобы обычный немодифицироваиный чугун затвердевал бы в отливке с отбелом (т. е. белым или половинчатым). Модификаторы — ферросилиций, силикоалюминий, силикокальций и др. — добавляют в количестве 0,1—0,3% от массы чугуна непосредственно в ксцаш во время его заполнения. В структуре отливок из модифицированного серого чугуна не содержится ледебуритного цементита. Вследствие малого количества вводимого в чугун модификатора его химический состав практически остается неизменным. Жидкий модифицированный чугун необходимо немедленно разливать в литейные формы, так как эффект модифицирования исчезает через 10—15 мин. Высокопрочный чугун. Он имеет ферритную или перлитную структуру (см. рис. 23), является разновидностью серого чугуна, модифицированного магнием. Одновременно с ним или несколько позже в жидкий чугун вводят ферросилиций. В результате получают мелкие включения графита шаровидной формы (см. рис. 25,6). Этот чугун обладает повышенной прочностью по сравнению с обычными серыми чугунами. В зависимости от предела прочности (Qb) при растяжении и относительного удлинения () выскопрочные чугуны (ГОСТ 7293-79) разделяются следующие марки (в скобках указаны числовые значения твердости НВ): ВЧ 38—17 Механические свойства высокопрочного чугуна позволяют применять его для изготовления деталей машин, работающих в тяжелых условиях, вместо поковок или отливок из стали. Из высокопрочного чугуна изготовляют детали прокатных станов, кузнечно-прессового оборудования, паровых турбин (лопатки направляющего аппарата), тракторов, автомобилей (коленчатые валы, поршни) и др. Так, например, коленчатый вал легковой автомашины «Волга» .изготовляют из высокопрочного чугуна следующего состава! 3,4 — 3,6%! С; 1,8—2,2% Si; 0,96—1,2% Мп; 0,16— 0,30% Сг; <0,01% S; <0,06% Р и 0,01-0,03% Mg. Низкое содержание серы и фосфора и не большие пределы содержания других химических элементов обеспечивается тем, что такой чугун выплавляют не в вагранке, а в электрической печи. После термической обработки механические свойства чугуна получаются весьма высокими: ов = 620—650 МПа, 6 = 8—12% и твердость НВ=192—240. Ковкий чугун. Ковкий чугун — условное название более пластичного чугуна по сравнению с серым. Ковкий чугун никогда не куют, Отливки из ковкого чугуна получают длительным отжигом отливок из белого чугуна с перлитно-цементитной структурой. Толщина стенок отливки не должна превышать 40—50 мм. При отжиге цементит белого чугуна распадается с образованием графита хлопьевидной формы (см. рис. 25, в) У отливок с толщиной стенок более 50 мм при отжиге будет образовываться нежелательный пластинчатый графит. В зависимости от структуры металлической основы различают ковкий ферритный чугун и ковкий перлитный чугун. Ферритные ковкие чугуны получают из белых чугунов, выплавленных дуплекс-процессом и содержащих 2,4—2,8% С 0,8-1,4%! Si; 0,3-0,4% Мп; 0,08-0,1% S ≤0,2% Р. Для защиты от окисления при отжиг отливки из белого чугуна укладывают в специальные металлические ящики и засыпают пес ком, стальными стружками или шамотом. Отжиг белого чугуна состоит в медленном нагреве (20-25 ч) до температуры 950— 1000°С и длительно выдержке (10—15 ч) при этой температур. В процессе выдержки происходит первая стадия графитизации, заключающаяся в распаде эвтектического и избыточного вторичного цементита который в небольшом количестве имеется при этой температуре. К концу выдержки заканчнвается первая стадия графитизации и чугун состоит из аустенита и включений углерода отжига. Затем температуру снижают до 720—740°С, снова выдерживают чугун в течение 25—30 (рис. 5.7, режим 1). В это время происходит вторая стадия графитизации, в процессе которой распадается цементит перлита. Ферритный ковкий чугун называют также черносердечным по виду излома, который из-за большого количества графитных включений в ферритной основ имеет темный матовый цвет.
Рис. 5.7. Отжиг белого чугуна
Перлитные ковкие чугуны получают из белы чугунов, выплавленных преимущественно в вагранках. Белый чугун для этого должен иметь следующий химический состав: 2,8—8,4% С 0,5—0,8% Si; 0,4—0,5% Мп; 0,2% Р и 0,12% < Для уменьшения содержания углерода отжиг выполняют в окислительной среде. Для этого отливки засыпают окалиной или измельченной железной рудой. Режим отжига состоит в.нагреве до температуры примерно 1000°С, длительной выдержке при этой температуре (первая стадия графитизаций) и непрерывном медленном охлаждении до комнатной температуры (рис. 26, режим 2). При таком отжиге значительная часть углерода выгорает, а в поверхностном слое глубиной до 1,5—2,0 мм наблюдается полное обезуглероживание. Поэтому в изломе чугун получается светлым и его называют светлосердечным. Перлитные ковкие чугуны имеют меньшее применение, чем ферритные ковкие чугуны. В зависимости от предела прочности при растяжении (<tb) и относительного удлинения (6) ковкий чугун (ГОСТ 1215—79) разделяют на следующие марки (в скобках указаны числовые значения твердости НВ): КЧ 30—6 (163), КЧ 33—8 (163),,КЧ 35—10 (163), КЧ 37—12 (163) — ферритные черносердечные и КЧ 45—6 (241), КЧ 50—4 (241), КЧ 56—4 (269), КЧ 60—3 (269), КЧ 63—2 (269) — перлитные светло-сердечные. Ковкий чугун широко применяют в автомобильном, сельскохозяйственном и текстильном машиностроении. Из него изготовляют детали высокой прочности, способные воспринимать повторно-переменные и ударные нагрузки и работающие в условиях повышенного износа, такие, как картер заднего моста, тормозные колодки, ступицы, пальцы режущих аппаратов сельскохозяйственных машин, шестерни, крючковые цепи и др. Широкое распространение ковкого чугуна, занимающего по механическим свойствам промежуточное положение между серым чугуном и сталью, обусловлено лучшими по сравнению со сталью литейными свойствами исходного белого чугуна, что позволяет получать отливки сложной формы. Ковкий чугун характеризуется достаточно высокими антикоррозионными свойствами и хорошо работает в среде влажного воздуха, топочных газов и воды. Чугуны со специальными свойствами. Такие чугуны используют в различных отраслях машиностроения тогда, когда отливка кроме прочности должна обладать теми или иными специфическими свойствами (износостойкостью, химической стойкостью, жаростойкостью и т. п.). Из большого количества чугунов со специальными свойствами приведем в качестве примеров следующие. Магнитный чугун используют для изготовления корпусов электрических машин, рам, щитов и др. Для этой цели наилучшим является ферритный чугун с шаровидным графитом. Немагнитный чугун используют для изготовления кожухов и бандажей различных электрических машин. Для этого применяют никелемарганцовистый чугун, содержащий 7—10% Мп и 7—9% Ni, а также марганцево-медистый чугун, в котором содержится 9,8% Мп и 1,2 — 2,0% Си. Аустенитный чугун имеет высокие показатели по кислотостойкости, щелочестойкости и жаропрочности. Примерами этих чугунов являются нирезит, содержащий 14% Ni, 2% Gr, 7% Си и никросилал с 5% Si, 18% Ni, 2% Сг и др. Жаростойкий чугун — содержит 20—25% А1. К чугунам со специальными свойствами относят также упомянутые ранее ферросплавы — ферромарганец, ферросилиций и т. д., предназначенные для раскисления и легирования стали при ее выплавке. Стали
Сталь— основной материал, широко применяемый в машино- и приборостроении, строительстве, а также для изготовления различных инструментов. Она сравнительно недорога и производится в больших количествах. Сталь обладает ценным комплексом механических, физико-химических и технологических свойств. Стали классифицируют по химическому составу, назначению, качеству, степени раскисления и структуре. Классификация по химическому составу. По химическому составу стали подразделяют на углеродистые и легированные. Сталь, свойства которой в основном зависят от содержания углерода, называют углеродистой. Углеродистые стали по содержанию в них углерода подразделяют на низкоуглеродистые (до 0,25% С), среднеуглеродистые (0,25—0,6% С) и высокоуглеродистые (более 0,6% С). Легированной называют сталь, в состав которой входят специально введенные элементы для придания ей требуемых свойств. По количеству введенных легирующих элементов легированную сталь делят на три группы: низколегированную (с суммарным содержанием легирующих элементов до 2,5%), среднелегированную (от 2,5 до 10%) и высоколегированную (свыше 10%). В зависимости от введенных « элементов различают стали, например, хромистые, марганцовистые, хромоникелевые и т. п. Классификация по назначению.Стали по назначению делят: на конструкционные, инструментальные и стали специального назначения с особыми свойствами. Конструкционные стали представляют наиболее обширную группу, предназначенную для изготовления деталей машин, приборов и элементов строительных конструкций. Из конструкционных сталей можно выделить цементуемые, улучшаемые, автоматные, высокопрочные и рессорно-пружинные стали. Инструментальные стали подразделяют на стали для изготовления режущего, измерительного инструмента и штампов холодного и горячего деформирования. Стали специального назначения — это нержавеющие, коррозионностойкие, жаростойкие, жаропрочные, износостойкие и др. Классификация по качеству. Стали по качеству классифицируют на стали обыкновенного качества, качественные, высококачественные и особовысококачественные. Под качеством понимается совокупность свойств стали, определяемых металлургическим процессом ее производства. Однородность химического состава, строение и свойства стали зависят от содержания вредных примесей и газов (кислорода, водорода, азота). Основными показателями для разделения сталей по качеству являются нормы содержания вредных примесей (серы, фосфора). Стали обыкновено го к а ч е с т в а содержат до 0,06% S и 0,07% Р, качественные — до 0,035% S и 0,035% Р, высококачественные—не более 0,025% S и 0,025% Р, а особовысококачественные — не более 0,015%' S и 0,025% Р. Классификация по степени раскисления. Стали, по степени раскисления классифицируют на спокойные, полуспокойные и кипящие. Раскислением называют процесс удаления кислорода из жидкой стали. Нераскисленная сталь обладает недостаточной пластичностью и подвержена хрупкому разрушению при горячей обработке давлением. Спокойные стали хорошо раскислены марганцем, алюминием и кремнием в печи и ковше. Они затвердевают в изложнице спокойно, без газовыделения, с образованием в верхней части слитков упадочной раковины. Дендритная ликвация в крупных слитках такой стали при их прокатке или ковке приводит к появлению полосчатой структуры. Это вызывает анизотропию механических свойств. Пластические свойства стали в поперечном (по отношению к направлению прокатки или ковки) значительно ниже, чем в продольном. Зональная ликвация приводит, к тому, что в верхней части слитка содержание серы, фосфора и углерода увеличивается, а в нижней — уменьшается. Это приводит к ухудшению свойств изделия из такого слитка, вплоть до отбраковки. Кипящие стали раскисляют только марганцем. Они раскислены недостаточно. Перед разливкой в них содержится повышенное количество кислорода, который при затвердевании слитка частично реагирует с углеродом и выделяется в виде пузырей окиси углерода СО, создавая ложное впечатление «кипения» стали. Движение металла при кипении способствует развитию в слитках такой стали - зональной ликвации. По сравнению со спокойной сталью такие слитки не имеют усадочной раковины. Кипящая сталь практически не содержит неметаллических включений продуктов раскисления. Кипящие стали относительно дешевы. Их выплавляют низкоуглеродистыми и с очень малым содержанием кремния (Si ^0,07%), но с повышенным количеством газообразных примесей. При прокатке слитков такой стали газовые Пузыри, заполненные окисью углерода, завариваются. Листы из такой стали, предназначенные для изготовления деталей кузовов автомашин вытяжкой, имеют хорошую штампуемость при выполнении формоизменяющих операций холодной листовой штамповки. Полуспокойные стали по степени их раскисления занимают промежуточное положение между спокойными и кипящими сталями. Частично их раскисляют в печи и ковше, а частично — в изложнице за счет содержащегося в металле углерода. Ликвация в слитках полуспокойной стали меньше, чем в кипящей, и приближается к ликвации в слитках спокойной стали. Классификация по структуре. Стали по структуре классифицируют в состояниях после отжига и нормализации (см. гл. IV). В отожженном (равновесном) состоянии на доэвтектоидные, имеющие в структуре избыточный феррит; эвтектоидные, структура которых состоит из перлита; заэвтектоидные, в структуре которых имеются вторичные карбиды, выделяющиеся из аустенита; ледевуритные, в структуре которых содержатся первичные (эвтектические) карбиды; аустенитные; ферритные. По структуре после нормализации стали подразделяют на следующие сновные классы: перлитный, мартенситный (см. гл. IV), аустенитный, ферритный. Мартенсит представляет собой сильно перенасыщенное углеродом а-железо с искаженной кристаллической решеткой. Влияние углерода и постоянных примесей на свойства углеродистых сталей.В составе углеродистой стали кроме железа и углерода содержится ряд постоянных примесей: кремний, марганец, сера, фосфор, кислород, азот, водород и другие элементы, которые оказывают большое влияние на свойства стали. Присутствие примесей объясняется трудностью их удаления при выплавке (сера, фосфор) или переходом их в сталь при ее раскислении (кремний, марганец) или из шихты (хром, никель). Структура стали без термической обработки после медленного охлаждения состоит из смеси феррита и цементита, т. е. структура такой стали либо перлит + феррит, либо перлит + цементит. Количество цементита возрастает в стали прямо пропорционально содержанию углерода (рис. 5.8, б). Твердость цементита (HV 800) на: порядок больше твердости феррита .(HV 80). Твердые частицы цементита повышают сопротивление деформации, уменьшая пластичность и вязкость. Таким образом с увеличением в стали содержания углерода возрастают твердость, предел прочности и уменьшаются ударная вязкость, относительные удлинение и сужение (рис. 5.8, а).
Рис. 5.8. Влияние углерода на механические свойства стали (а) и на количество феррита и цементита (б) Механические свойства приведены для горячей деформированной стали без термической обработки. Цифры являются средними и могут колебаться в пределах ±10% в зависимости от содержания примесей, условий охлаждения после прокатки и т. д. Для заэвтектоидных сталей на их механические свойства сильное влияние оказывает вторичный цементит, который образует хрупкий «каркас» вокруг зерен перлита. Этот «каркас» преждевременно разрушается подагрузкой, что вызывает снижение прочности, пластичности и вязкости. Поэтому заэвтектоидные стали применяют после специального отжига, в результате которого получают в структуре зернистый перлит. Увеличение содержания углерода сверх 0,4% и уменьшение ниже 0,3% приводит к ухудшению обрабатываемости резанием. Увеличение содержания углерода снижает технологическую пластичность стали при горячей и в особенности при холодной обработке давлением и ухудшает Увеличение содержания углерода повышает температуру порога хладноломкости (температурный интервал перехода стали в хрупкое состояние) в среднем на 20°С на каждые 0,1% углерода. Содержание кремния в углеродистой стали в виде примеси составляет обычно до 0,4%, а марганца 0,5—0,8%. Кремний и марганец являются полезными примесями. Они переходят в сталь в процессе ее раскисления при выплавке. Раскисление улучшает свойства стали. Кремний сильно повышает предел текучести стали сто,2, что снижает способность стали к вытяжке. Поэтому в сталях, предназначенных для холодной штамповки, содержание кремния должно быть наименьшим. Марганец повышает прочность стали, не снижая пластичности, и резко уменьшает хрупкость при высоких температурах (краснолом Сераявляется вредной примесью в стали, содержание ее в зависимости от качества стали не должно превышать 0,06%. Сера нерастворима в железе. С железом она образует химическое соединение — сульфид железа (FeS). Соединение FeS образует с железом эвтектический сплав (эвтектику) с температурой плавления 988°С. При кристаллизации железоуглеродистых сплавов эвтектика располагается обычно по границам зерен. При нагревании стали до 1000—1300°С эвтектика расплавляется и нарушается связь между зернами металла, т. е. происходит охрупчивание, вызываемое оплавлением примесей по границам кристаллов. Явление красноломкости может проявляться при ковке или прокатке стали, когда вследствие красноломкости на деформируемом металле в местах расположения эвтектики возникают надрывы и трещины. При наличии в стали марганца образуется тугоплавкое соединение — сульфид MnS. В затвердевшей стали частицы MnS располагаются в виде отдельных включений, что исключает образование легкоплавкой эвтектики и явление красноломкости. Сульфиды, как и другие неметаллические включения, сильно снижают однородность строения и механические свойства стали, в особенности пластичность, ударную вязкость и предел выносливости, а также ухудшают свариваемость и коррозионную стойкость. Фосфор является вредной примесью в стали, и содержание его в зависимости от качества стали не должно превышать 0,08%. Растворяясь в феррите, фосфор сильно искажает и уплотняет его кристаллическую решетку. При этом увеличиваются пределы прочности и текучести, сплава, но уменьшаются его пластичность и вязкость. Фосфор значительно повышает порог хладноломкости стали и увеличивает склонность сплава к ликвации. Газы (азот, водород, кислород) частично растворены в стали и присутствуют в виде хрупких неметаллических включений — оксидов и нитридов. Примеси, концентрируясь по границам зерен в виде нитридов и оксидов, повышают порог хладноломкости, понижают предел выносливости и сопротивление хрупкому разрушению. Так, хрупкие оксиды при горячей обработке стали давлением не деформируются, а крошатся и разрыхляют металл. Влияние растворенного в стали водорода проявляется в охрупчивании стали. Поглощенный при выплавке стали водород, кроме того, приводит к образованию в крупных поковках флокенов — очень тонких трещин овальной или округлой формы. Флокены резко ухудшают свойства и недопустимы встали, предназначенной для изготовления ответственных деталей. Кремний, марганец, сера, фосфор, а также газы: кислород, азот, водород — постоянные примеси в стали. Кроме них в стали могут находиться случайные примеси, попадающие в сталь из вторичного сырья или руд отдельных месторождений. Из скрапа (стального лома) в сталь могут попасть хром, никель, олово и ряд других элементов. Отдельные элементы, например медь, мышьяк, попадают в сталь из руды. Случайные примеси находятся в стали в небольших количествах, и они оказывают на свойства стали незначительное влияние.
ЛЕКЦИЯ 6
|