![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Индексный метод изучения статистических совокупностейИндексы средних величин. Рассмотрим индексы среднего уровня, их взаимосвязь и выявим роль факторов в динамике сложных явлений. Часто в статистике необходимо изучать динамику явлений с помощью средних величин. Например, в экономике, в торговле приходится изучать изменение средней цены, среднего уровня издержек производства, средней заработной платы, средней себестоимости и т.д. При этом используются индексы среднего уровня. Если среднее значение: где Это индекс переменного состава, показывающий изменение среднего уровня
Однако средние величины отражают динамику не только самого усредняемого показателя по группам осреднения, но и изменения соотношения групп в общем итоге, то есть изменение структуры. Так, например, средняя зарплата может вырасти не только за счет роста ее у отдельных категорий работников, но и за счет роста удельного веса числа высокооплачиваемых квалифицированных работников. Средняя урожайность может вырасти за счет изменения структуры посевных площадей. Средняя цена товара может меняться в связи с изменением самой цены, так и изменения структуры продаж, то есть изменение удельного веса продаж дорогих изделий и т.д. Для изучения влияния различных факторов на средний уровень изучаемого показателя используется индекс постоянного состава:
Индекс структурных сдвигов исчисляется по формуле:
Данный индекс показывает влияние структуры (
В символике коммерческой деятельности и статистике товарного обращения для средней цены эта последняя модель выглядит так:
Если перейти от среднего уровня показателя к исчислению средних индексов, то по индивидуальным индексам можно исчислить агрегатный индекс:
Базисные и цепные индексы. В ряде случаев изучение динамики требует анализа развития экономики или социального явления не за два периода (текущего и базисного), а за несколько. В этом случае используется система индексов. При этом число исчисляемых индексов равно числу периодов минус единица. Существует два варианта системы индексов. 1. Если в индексах знаменатель постоянный и характеризует уровень базисного периода, то сами индексы называются базисными (то есть сравнение идет с уровнями одного периода, взятого за базу). 2. Если индексы построены так, что каждый уровень (числитель) сравнивается с примыкающим к нему предшествующим уровнем (знаменатель) – то индексы называются цепными. И базисные и цепные индексы могут быть с постоянным и переменным весом. Цепной индекс: с постоянным весом: с переменным весом: Базисный индекс: с постоянным весом: с переменным весом: Взаимосвязь между цепными и базисными индексами следующая:
где
Произведение цепных индексов дает базисный индекс последнего периода, причем расчет цепных и базисных индексов полностью аналогичен расчету темпов роста ряда динамики.
|