Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Определение рабочей точки центробежного насоса




Читайте также:
  1. II 5.3. Определение сухой плотности
  2. II этап. Определение общей потребности в собственных финансовых ресурсах.
  3. III. ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ ПРОИЗВОДСТВА
  4. IV. Определение компенсирующего объёма реализации при изменении анализируемого фактора
  5. Nbsp;   7 Определение реакций опор для группы Ассура
  6. V 1: Определение и классификация
  7. А. Определение размеров района аварии
  8. А. Определение удельного электрического сопротивления максимально влажных пород мостовым способом переменного тока.
  9. А. Перемещением точки
  10. Автоматические регуляторы. Определение закона регулирования регулятора (на примере САР теплообменника). Классификация линейных регуляторов. Нелинейный регулятор (пример)

Для решения задачи необходимо :

1. Составить уравнение гидравлической сети.

2. Построить графическое изображение этого уравнения в координатах Q- H.

3. Нанести на этот график характеристику насоса и определить координаты точки пересечения напорной характеристики насоса и характеристики сети (координаты рабочей точки).

Последовательность решения задачи.

1). Выбираем два сечения - н-н и к-к, перпендикулярные направлению

движения жидкости и ограничивающие поток жидкости (Рис. 1).

Сечение н-н проходит по свободной поверхности жидкости в резервуаре 2, а сечение к-к – под поршнем в цилиндре 3.

2). Применяем в общем виде закон сохранения энергии для сечений н-н и к-к с учетом того, что жидкости добавляется энергия в насосе, равная потребному в данной сети напору Hпотр:

  (26)

3). Раскрываем содержание слагаемых уравнения (26) для нашей задачи.

 

Для определения величин zн и zк выбираем горизонтальную плоскость сравнения 0-0. Для удобства ее обычно проводят через центр тяжести одного из сечений. В нашем случае плоскость 0-0 совпадает с сечением н-н.

zн и zк- вертикальные отметки центров тяжести сечений. Еслисечение расположеновыше плоскости 0-0, отметка берется со знаком плюс, если ниже- со знакомминус.

zн=0; zk=H1+H2.

рн, рк - абсолютные давления в центрах тяжести сечений.

Давление на поверхности открытых резервуаров равно атмосферному, а взакрытых резервуарахилив трубе - сумме атмосферного давления и показания прибора (манометрическое давление берется со знакомплюс, вакуумметрическое - со знаком минус). Вакуумметрическое давление – это отрицательное манометрическое.

рн = рат+ рм ;

Если на жидкость в сечении действует сила, передаваемая через поршень, то давление определяется из условия равновесия поршня и равно:

рк = R/S + рат ., где S=p×D2/4 – площадь сечения поршня.

 

Jн , Jк - средние скорости движения жидкости в сечениях.

Согласно закону сохранения количества вещества через любое сечение потокапроходитодин и тот же расход жидкости:

  Qн = Q1 = Q2 = Qк. (27)

Здесь Q1 и Q2 - расходы в сечениях всасывающего и напорного трубопроводов. Учитывая, что Q =J×w, вместо (27) получим:



  Jн×wн =J1×w1 = J2×w2=.......= Jк×wк, (28)

где wн, w1, w2, wк - площади соответствующих сечений.

Поскольку площади сечений резервуаров значительно больше площадей сечений труб, скорость Jн очень мала по сравнению со скоростями в трубах J1 и J2 и величиной aнJн2/2gможно пренебречь. Скорость Jк= Q/wк.

aн и aк - коэффициенты Кориолиса ; a= 2 при ламинарном режиме движения, a=1 при турбулентном режиме.

Принимаем: Jн » 0; Jк= Q/wк==Q/(p×D2/4).

Потери напора hн-к при движении жидкости от сечения н-н к сечению к-к складываются из потерь во всасывающем и нагнетательном трубопроводах, причем в каждом трубопроводе потери разделяются на потери по длине и местные:

  hн-к= h1 + h2= hдл.1 + hф + hпов.1 +hдл.2 + hкр. +2hпов.+ hвых. (29)  
  - потери по длине на всасывающем трубопроводе.
- потери в приемной коробке (фильтре). xф зависит от диаметра всасывающего трубопровода (при d=140мм xф = 6,2, приложение 5).
- потери на поворот во всасывающем трубопроводе, xпов. - коэффициент сопротивления при резком повороте на угол 90° (xпов =1,32 - приложение 5).  
  - потери по длине на нагнетательном трубопроводе.
xкр. =0 - задается по условию.
- потери на поворот в нагнетательном трубопроводе, xпов. - коэффициент сопротивления при резком повороте на угол 90°(xпов =1,32 - приложение 5).  
- потери при выходе из трубы в резервуар (xвых =1 - приложение 5).    
         

Для определения коэффициентов местных сопротивлений переходим по гиперссылке в справочный файл Приложение.doc (делаем щелчок мышью по слову приложение).



С учетом вышеприведенных зависимостей, вместо (29) можно записать:

  (30)

4). Подставляем в уравнение (26) определенные выше значения слагаемых:

; В этом уравнении атмосферное давление сокращается, рм, R, hвс, hн, dвс, dн, lвс, lн известны по условию; åxвс = xвх+xпов.=6,2+1,32=7,54; åxнагн. = xкр+2xпов+xвых..=0+2×1,32+1=3,64.   (31)

5). Выражаем в уравнении (31) скорости J1 и J2 через расход жидкости:

  J1 = Q / w1=4Q/p×d12; J2 = Q / w2=4Q/p×d22;  

6). Упрощаем уравнение (31) и определяем потребный напор Hпотр. :

  (32)

Зависимость (32) и представляет собой уравнение (характеристику) гидравлической сети. Это уравнение показывает, что в данной сети напор насоса расходуется на подъем жидкости на высоту (H1 +H2), на преодоление противодавления R/S - рм и на преодоление гидравлических сопротивлений.

7. Строим характеристику насоса Д-320 и наносим на нее графическое изображение характеристики сети (32).

Для построения характеристики сети задаемся несколькими значениями расхода жидкости из рабочего диапазона насоса Д-320 и вычисляем по уравнению (32) значение потребного напора Hпотр. Перед вычислением определяем при температуре t = 30°С плотность и вязкость жидкости по справочным данным.



Плотность жидкости при другой температуре можно определить по формуле:

rt = r0 / (1+a×Dt),

где rt - плотность жидкости при температуре t=t0 +Dt;

Dt - изменение температуры;

t0 - температура, при которой плотность жидкости равна r0;

a - коэффициент температурного расширения (в среднем для минеральных

масел и нефти можно принять a=0,0007 1/° C, для воды, бензина, керосина

a=0,0003 1/° C) .

2. Вязкость при любой температуре определяется по формуле:

nt = n20×eb×(t-20);b = 1/(t2 - t1)× ln (nt2/nt1). - приложение 3

 

Для нашей задачи (нефть легкая):

t0=20°, t=30°, Dt=30-20=10, r0=884, a=0,0007 1/° C, n20=0,25см2/c, t1=20°, t2=40°, nt1=0,25см2/c, nt2=0,15см2/c. Все вычисления будут производиться в Excel.

 

Анализ формулы (32) показывает, что при задании расхода Q все величины в правой части уравнения известны, кроме коэффициента трения l.

Последовательность вычисления l:

 
  Re < 2300 l=64 / Re
  Re > 2300 l = 0,11×(68/Re + Dэ/d)0,25

Принимаем величину абсолютной шероховатости трубопровода

Dэ = 0,5 мм (трубы стальные, сварные, бывшие в употреблении, приложение 4). Вычисления и построение графиков выполняем на ЭВМ с помощью электронных таблиц (Microsoft Excel).

Для перехода в Excel выделите таблицу и график на следующей странице и сделайте двойной щелчок мышью. Перед Вами появится лист документа Excel. Выполняйте указания, которые там приведены. Не забудьте изменить сумму коэффициентов местных сопротивлений на всасывающей и нагнетательной линии!

Исходные данные приведены в таблице (раздел 1. Постановка задачи).

 


Рис.13. Определение рабочей точки насоса.

 

Согласно рис.13, рабочая точка насоса имеет следующие параметры:

Q = 76× 10-3м3/с, H = 59м, h =0,68

8. Определяем мощность приводного двигателя:

Nдв.=r×g×H×Q/h=878×9,8×59×76×10-3/0,68=56,7 кВт.

 

ПРИЛОЖЕНИЯ

Приложение 1


Дата добавления: 2014-12-23; просмотров: 16; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.02 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты