Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Проявление торсионных взаимодействий в механике.




Силы инерции как частный случай проявления торсионного поля. Свойства сил инерции. Обобщение закона сохранения импульса. Эксперимент Н.В. Филатова по столкновению двух гироскопов с массивным телом.

 

В разделе "Относительность сил и полей инерции" было показано, что торсионные поля в механике проявляют себя через силы инерции. До сих пор силы инерции оставались загадкой для физиков, начиная с ньютоновских времен. Дело в том, что в отличие от всех других сил, наблюдаемых в механике, силы инерции:

а) не удовлетворяют третьему закону механики Ньютона (закону действия и противодействия), поскольку неизвестно со стороны каких тел они приложены;

б) являются сразу и внешними и внутренними по отношению к некоторой изолированной механической системе (см. рис. 42);

в) все четыре силы инерции порождены вращением материи;

г) в общем случае последовательное описание сил инерции требует введения десятимерного пространства событий, наделенного геометрией Вайценбека.

Рис. 42. Силы инерции проявляют себя одновременно как внутренние и внешние по отношению к некоторой изолированной (в механическом смысле) системе: а) – два маятника с длиной подвеса L прикреплены с внешней и внутренней стороны ящика; б) – при движении ящика с постоянным ускорением W оба маятника отклоняются на одинаковый угол .

 

Перечисленные свойства сил инерции выводят их за рамки механики Ньютона и некоторые теоремы, доказанные в этой механике, оказываются неприменимыми к системам, где действуют силы инерции.

Напомним, что силы инерции порождены полями инерции, которые аналитически описываются кручением пространства Вайценбека, т.е. являются торсионными полями. Свойства сил инерции и их необычное проявление связано с торсионной природой этих сил. Поэтому торсионные взаимодействия можно определить как процессы, в которых решающую роль играют силы инерции.

Наиболее ярким примером проявления торсионных взаимодействий в механике является обобщение закона сохранения линейного импульса

m1V1 + m2V2 = const

который выполняется в механике Ньютона при упругом столкновении двух не вращающихся масс m1 и m2, движущихся со скоростями V1 и V2 соответственно. С точки зрения теории физического вакуума изменение скоростей тел после столкновения вызвано ускорением, которое в десятимерном пространстве событий геометрии Вайценбека описывается как вращение в пространственно-временных плоскостях (см. рис. 3). Поэтому закон сохранения линейного импульса оказывается ограниченным, поскольку во вращении участвую только три псевдоевклидовых угла.

Рис. 43. Косой удар без проскальзывания двух вращающихся шарообразных тел. Векторы угловых скоростей трехмерного вращения перпендикулярны плоскости чертежа.

 

Самый общий закон сохранения импульса следует из модели шестимерного вращения. Реальная ситуация, которая демонстрирует шестимерное вращение при ударе вращающихся тел, изображена на рис. 43. На нем представлен косой удар двух вращающихся шарообразных тел массы m1 и m2 с радиусами r1 и r2, угловыми скоростями и . При ударе тел происходит обмен не только линейными, но и угловыми скоростями. Если направить ось х по линии, соединяющей центры сталкивающихся тел, то в этом случае обобщенный закон сохранения выглядит следующим образом:

m1Vx1 + m2Vx2 = const

J1 + m1Vy1R + J2 + m2Vy2R = const

В частном случае, когда удар прямой, компоненты Vy обращаются в нуль, и из второго равенства мы получаем известный закон сохранения углового импульса:

J1 + J2 = const

В общем случае компоненты Vy отличны от нуля, что приводит к обмену между вращательными и поступательными импульсами системы, т.е. к нарушению закона сохранения линейного импульса механики Ньютона.

Эксперименты, показывающие нарушение закона сохранения линейного импульса были проведены российским ученым Н.В. Филатовым. В эксперименте исследовалось столкновение двух вращающихся в разные стороны гироскопов, установленных на тележке, с массивным телом (см. рис. 44).

Рис. 44. Схема опыта Филатова по столкновению двух гироскопов с массивным телом: а) – вид сбоку; б) – вид сверху.

 

Для того, чтобы удар был без проскальзывания по ободу гироскопов, установлены короткие стержни, по которым массивное тело наносило удар. Кроме того, гироскопы были установлены в кардановых подвесах и могли прецессировать.

В многочисленный экспериментах Филатова удалось установить, что в том случае, когда после удара гироскопы начинали прецессировать, линейный импульс системы не сохранялся. Происходил обмен между (внутренним) вращательным и (внешним) поступательным импульсами системы, что приводило к изменению скорости центра масс системы после удара.

 


Поделиться:

Дата добавления: 2014-12-30; просмотров: 144; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты