Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Трехзначная логика Лукасевича.




Трехзначная логика — раздел логики, в котором высказывания могут иметь три истинностных значения: истина, ложь и неопределенное.

Трехзначная логика применима в ситуациях, на которые не распространяется закон исключенного третьего.

Первую систему трехзначной логики разработал в 1920 г. польский логик Ян Лукасевич. Рассмотрим ее идеи.

Вводятся три истинностных значения: 1 (истинно), 1/2 (неопределенно), 0 (ложно), и операции отрицание, импликация, дизъюнкция и конъюнкция.

Особенностью системы Лукасевича является использование бесскобочной записи высказывании.

Перейдем к определению истинностных значений формул в трехзначной логике.

Истинностное значение отрицания высказывания а определяется формулой: Na = 1—а.

Истинностное значение конъюнктивного высказывания определяется формулой: &ab = min (а, b).

Истинностное значение дизъюнктивного высказывания определяется формулой: Vab = max (а, b), Истинностное значение импликативного высказывания определяется формулой:

→ab = min (1,1 —a+b).

Получается, что, исключив строки, в которых высказывания а и b имеют истинностное значение 1/2, мы автоматически переходим к двухзначной логике.

В обычной двухзначной логике имеются тождества, позволяющие заменять высказывание с импликацией на высказывания с дизъюнкцией или с конъюнкцией, это так называемые правила устранения импликации :a→b ≡ ~avb | a→b ≡ ~(a•~b). В трехзначной логике Лукасевича им должны соответствовать тождества: Cab ≡ ANab, Cab ≡ NKaNa. Посмотрим, выполняются ли эти тождества.

Сравнивая значения формул Cab, ANab, NKaNa по строчкам, мы видим, что они совпадают. Следовательно, в трехзначной логике Лукасевича также действуют тождества, позволяющие заменять формулу с импликацией на формулы с конъюнкцией или дизъюнкцией.

В трехзначной логике Лукасевича правила де Моргана выполняются.

В Двухзначной логике формулы a→(b→a), а→а, ~(a→~a), av~a являются тавтологиями, т.е. они истинны при любых значениях а и b. Причем второй, третьей и четвертой тавтологиям соответствуют законы тождества, противоречия (непротиворечия) и исключенного третьего.

В трехзначной логике Лукасевича выполняется закон тождества. Законы противоречия (непротиворечия) и исключенного третьего не выполняются в трехзначной логике Лукасевича.

В дальнейшем Лукасевичем и другими логиками (Э. Пост, С. Яськовский, Е. Слупецкой, Д. Вебб, Дж. Россер) были созданы различные варианты многозначных, в том числе бесконечнозначных, логик, в которых истинностными значениями служат числа, входящие в интервал от 0 до 1. Эти логики используются для решения логических парадоксов, проблем теории вероятностей, при разработке теории информационно-логических машин и т.д. В то же время необходимо подчеркнуть, что многозначные логики не заменяют обычную двузначную логику, которая остается необходимой в качестве метаязыка для описания свойств самой многозначной, в том числе трехзначной, логики.

 


Поделиться:

Дата добавления: 2015-01-05; просмотров: 282; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты