Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Сущность физико-химических методов анализа. Их классификация




Читайте также:
  1. I. Стоимость капитала: сущность и трактовки.
  2. I. Сущность и структура финансового рынка.
  3. I.2.2) Классификация юридических норм.
  4. II. Классификация документов
  5. II. Сущность и классификация источников и методов финансирования.
  6. II.3.2) Классификация законов.
  7. II.4. Классификация нефтей и газов по их химическим и физическим свойствам
  8. IV.2.1) Понятие и классификация исков частного права.
  9. RКлассификация ишемической болезни сердца.
  10. V 1: Определение и классификация

 

Физико-химические методы анализа, как и химичес­кие методы, основаны на проведении той или иной хими­ческой реакции. В физических методах химические реак­ции отсутствуют или имеют второстепенное значение, хо­тя в спектральном анализе интенсивность линий всегда существенно зависит от химических реакций в угольном электроде или в газовом пламени. Поэтому иногда физи­ческие методы включают в группу физико-химических методов, так как достаточно строгого однозначного разли­чия между физическими и физико-химическими метода­ми нет и выделение физических методов в отдельную группу не имеет принципиального значения.

Химические методы анализа были не в состоянии удов­летворить многообразные запросы практики, возросшие в результате научно-технического прогресса, развития полу­проводниковой промышленности, электроники и ЭВМ, ши­рокого применения чистых и сверхчистых веществ в техни­ке. Применение физико-химических методов анализа на­шло свое отражение в медико-биологических, медико-гиги­енических и фармацевтических исследованиях, где также требуется определение более низкого содержания компо­нентов в биологических жидкостях и тканях, фармацевти­ческих препаратах, в воздушной и водной средах.

Точность физико-химических методов сильно колеблет­ся в зависимости от метода. Наиболее высокой точностью (до 0,001%) обладает кулонометрия, основанная на изме­рении количества электричества, которое затрачивается на электрохимическое окисление или восстановление опреде­ляемых ионов или элементов. Большинство физико-хими­ческих методов имеют погрешность в пределах 2-5 %, что превышает погрешность химических методов анализа. Од­нако такое сравнение погрешностей не вполне корректно, так как оно относится к разным концентрационным областям. При небольшом содержании определяемого компонен­та (около 10-8 % и менее) классические химические методы анализа вообще непригодны; при больших концентрациях физико-химические методы успешно соперничают с хими­ческими. К числу существенных недостатков большинства физико-химических методов относится обязательное нали­чие эталонов и стандартных растворов.

Среди физико-химических методов наибольшее прак­тическое применение имеют спектральные и другие опти­ческие методы; электрохимические и хроматографические методы анализа.



Наиболее обширной по числу методов и важной по практическому значению является группа спектральных и других оптических методов. Эти методы основаны на взаимодействии веществ с электромагнитным излучением. Известно много различных видов электромагнитных излучений: γ-лучи, рентгеновское излучение, ультрафио­летовое, видимое, инфракрасное, микроволновое и радио­частотное. В зависимости от типа взаимодействия элект­ромагнитного излучения с веществом оптические методы классифицируются следующим образом.

На измерении эффектов поляризации молекул вещест­ва основаны рефрактометрия, интерферометрия и поляриметрия.

Анализируемые вещества могут поглощать электромаг­нитное излучение и на основе использования этого явления выделяют группу абсорбционных оптических методов.

Поглощение света атомами анализируемых веществ используется в атомно-абсорбционном анализе. Способ­ность поглощать свет молекулами и ионами в ультрафио­летовой, видимой и инфракрасной областях спектра позволила создать молекулярно-абсорбционный анализ (ко­лориметрию, фотоколориметрию, спектрофотометрию, ИК-спектроскопию).



Поглощение и рассеяние света взвешенными частица­ми в растворе (суспензии) привело к появлению методов турбидиметрии и нефелометрии.

Методы, основанные на измерении интенсивности из­лучения, возникающего в результате выделения энергии возбужденными молекулами и атомами анализируемого вещества, называются эмиссионными методами. К молекулярно-эмиссионным методам относят люминесценцию (флуоресценцию), к атомно-эмиссионным - эмиссионный спектральный анализ и пламенную фотометрию.

Электрохимические методы анализа основаны на изме­рении электрической проводимости (кондуктометрия); разности потенциалов (потенциометрия); количества элект­ричества, прошедшего через раствор (кулонометрия); за­висимости величины тока от приложенного потенциала (вольт-амперометрия); времени, необходимого для про­хождения электрохимической реакции (хроноэлектрохи-мические методы).

В группу хроматографических методов анализа входят методы газовой и газожидкостной хроматографии, рас­пределительной, тонкослойной, адсорбционной, ионооб­менной и других видов хроматографии.

 


Дата добавления: 2014-11-13; просмотров: 36; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.033 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты