Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Какой режим работы пассивной цепи, содержащей катушки индуктивности и конденсаторы, называют резонансом? Какие два основных вида резонанса известны?




Читайте также:
  1. FDDI. Кадр. Процедуры управления доступом к кольцу и инициализации работы кольца.
  2. I. Задачи настоящей работы
  3. II. Организация выполнения курсовой работы
  4. II. Стоимость основных источников финансирования.
  5. III-яя глава: Режим, применяемый к почетным консульским должностным лицам и консульским учреждениям, возглавляемым такими должностными лицами.
  6. III. Защита курсовой работы
  7. III. КАКАЯ ИНФОРМАЦИЯ НУЖНА РУКОВОДСТВУ ДЛЯ РАБОТЫ
  8. III. Подготовка к защите, защита работы
  9. IV-1. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ДОМАШНЕЙ КОНТРОЛЬНОЙ РАБОТЫ №1.
  10. IV. Задачи для самостоятельной работы.

Ответ: Резонансом называют режим, когда в цепи, содержащей индуктивности и емкости, ток совпадает по фазе с напряжением. Входные реактивные сопротивление и проводимость равны нулю: x=ImZ=0 и B=ImY=0. Цепь носит чисто активный характер: Z=R; сдвиг фаз отсутствует ( = 0). В цепи, содержащей последовательно соединенные участки с индуктивным и емкостным характерами сопротивлений, резонанс называется резонансом напряжений. Рассмотрим простейшую цепь такого вида (рис. 2.23), которую часто называют последовательным контуром. Для нее резонанс наступает при x=xL–xC=0 или xL=xC, откуда: (2.33)

Напряжения на индуктивности и емкости в этом режиме равны по величине и, находясь в противофазе, компенсируют друг друга. Все приложенное к цепи напряжение приходится на ее активное сопротивление (рис. 2.42, а).

Рис. 2.42. Векторные диаграммы при резонансе напряжений (а) и токов (б)

Напряжения на индуктивности и емкости могут значительно превышать напряжения на входе цепи. Их отношение, называемое добротностью контура Q, определяется величинами индуктивного (или емкостного) и активного сопротивлений: . Добротность показывает, во сколько раз напряжения на индуктивности и емкости при резонансе превышают напряжение, приложенное к цепи. В радиотехнических цепях она может достигать нескольких сотен единиц. Из условия (2.33) следует, что резонанса можно достичь, изменяя любой из параметров – частоту, индуктивность, емкость. При этом меняются реактивное и полное сопротивления цепи, а вследствие этого – ток, напряжение на элементах и сдвиг фаз. Не приводя анализа формул, показываем графические зависимости некоторых из этих величин от емкости (рис. 2.43). Емкость , при которой наступает резонанс, можно определить из формулы (2.33): . Если, например, индуктивность контура L =0,2 Гн, то при частоте 50 Гц, резонанс наступит при емкости: мкФ.

Рис. 2.43. Зависимости параметров режима от емкости

Аналогичные рассуждения можно провести и для цепи, состоящей из параллельно соединенных R, L и C (рис. 2.31, а). Векторная диаграмма ее резонансного режима приведена на рис. 2.42, б. Рассмотрим теперь более сложную цепь с двумя параллельными ветвями, содержащими активные и реактивные сопротивления (рис. 2.44, а).



Рис. 2.44. Разветвленная цепь (а) и ее эквивалентная схема (б)

Для нее условием резонанса является равенство нулю ее реактивной проводимости:ImY=0. Это равенство означает, что мы должны мнимую часть комплексного выражения Y приравнять к нулю. Определяем комплексную проводимость цепи. Она равна сумме комплексных проводимостей ветвей:

.

Приравнивая к нулю выражение, стоящее в круглых скобках, получаем:

или . (2.34)

Левая и правая части последнего выражения представляют собой не что иное, как реактивные проводимости первой и второй ветвей B1 и B2. Заменяя схему на рис. 2.44, а эквивалентной (рис. 2.44, б), параметры которой вычисляем по формуле (2.31), и используя условие резонанса(B=B1–B2=0), снова приходим к выражению (2.34). Схеме на рис. 2.44, б соответствует векторная диаграмма, приведенная на рис. 2.45:

Рис. 2.45. Векторная диаграмма резонансного режима разветвленной цепи

Резонанс в разветвленной цепи называется резонансом токов. Реактивные составляющие токов параллельных ветвей противоположны по фазе, равны по величине и компенсируют друг друга, а сумма активных составляющих токов ветвей дает общий ток.




Дата добавления: 2015-01-14; просмотров: 20; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты