Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Двумерная случайная величина.




Читайте также:
  1. Билет №1. Дискретная случайная величина, закон и функция распределения
  2. Дискретная случайная величина. Закон распределения.
  3. Для проверки статистической значимости коэффициентов регрессии используется случайная величина
  4. Непрерывная случайная величина. Плотность вероятности.
  5. Пролог: Случайная встреча
  6. Простая случайная бесповторная выборка
  7. СЛУЧАЙНАЯ ВЫБОРКА
  8. Случайная повторная выборка для определения оценки доли признака

Функция распределения одной случайной величины не может описать все многообразие природных и, в том числе, экономических процессов и явлений. Для описания этих процессов используются двумерные и многомерные случайные величины. В данной главе остановимся на двумерных случайных величинах.

Двумерной случайной величиной называется функция вероятного события, наступившего в результате принятия величинами х и y случайных значений.

где X и Y случайные величины, которые могут быть как дискретными, так и непрерывными.

Двумерной случайной величиной называется функция вероятного события, наступившего в результате принятия величинами х и y случайных значений.

где

X и Y случайные величины, которые могут быть как дискретными, так и непрерывными.

Двумерную случайную величину можно интерпретировать как случайно взятую точку на плоскости Оxy, где x и y координаты этой точки.(Рис.1) Т.е. функция распределения F (x,y) есть вероятность попадания случайной точки в квадрант с вершиной в точке А(x,y), лежащей левее и ниже этой точки.

Для дискретной случайной величины функция распределения имеет следующий вид:

где вероятность суммируется для всех xi < x и yi < y.

Двумерную случайную величину можно интерпретировать как случайно взятую точку на плоскости Оxy, где x и y координаты этой точки.(Рис.1) Т.е. функция распределения F (x,y) есть вероятность попадания случайной точки в квадрант с вершиной в точке А(x,y), лежащей левее и ниже этой точки.

Для дискретной случайной величины функция распределения имеет следующий вид:

где вероятность суммируется для всех xi < x и yi < y.

Рис.1

Свойства функции распределения двумерной случайной величины.

1.Функция 0 ≤ F(x,y) ≤ 1, т.е. величина неотрицательная меньше 1.

2.Функция F(x,y) есть возрастающая функция по каждому из аргументов.

 

3.Функция распределения F(x,y) = 0, если хотя бы один из аргументов x или y стремится к минус бесконечности.

4.Функция F(x,y) равна функции от одного аргумента F(x) (F(y)), если y (x) стремится к бесконечности.

5. Функция F(x,y) равна 1, если оба аргумента стремятся к плюс бесконечности.

Геометрический смысл функции распределения есть поверхность на координатной плоскости Оxy.(Рис.2) Значение функции равно вероятности попадания случайной величины в область, рассчитанную по формуле:

Формула рассчета вероятности, состоящая из 4-х слагаемых, объясняется тем, что вероятность равна вероятности попадания случайной величины в бесконечный квадрант, исходящий из точки В, минус квадрант в точках А и С и плюс бесконечный квадрант в точке D, т.к. квадрант в точке D был вычтен дважды.



 

 

Рис.2


Дата добавления: 2015-01-18; просмотров: 17; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты