КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Законы Кирхгофа. Первый закон Кирхгофа: алгебраическая сумма токов в узле равна нулю
Первый закон Кирхгофа: алгебраическая сумма токов в узле равна нулю . (1.19) При этом токам, направленным к узлу, приписывается какой-либо один знак (например « + »), а от узла – противоположный.
Рис. 1.19 Так, для узла а цепи рис. 1.19 первый закон Кирхгофа имеет вид:
. Второй закон Кирхгофа: алгебраическая сумма ЭДС в любом замкнутом контуре равна алгебраической сумме падений напряжений на остальных элементах этого контура: . (1.20) Предварительно необходимо произвольно выбрать направление обхода контура, например, по часовой стрелке (см. рис. 1.19). Если направления ЭДС и условные положительные направления напряжений на элементах контура совпадают с выбранным направлением обхода контура, то такие ЭДС и напряжения записываются со знаком « + », в противном случае - « - ».
5. Принцип наложения при расчёте электрических цепей Принцип наложения: ток в любой ветви электрической цепи равен алгебраической сумме токов, вызываемых каждым источником электрической энергии в отдельности. Этот принцип справедлив для всех линейных электрических цепей. Принцип наложения применяется в методе расчета, получившем название метода наложения. При использовании данного метода поступают следующим образом: поочередно рассчитывают токи, возникающие от действия каждого источника электрической энергии в отдельности, мысленно удаляя остальные источники из схемы. При этом внутренние сопротивления источников должны остаться в цепи. Это означает, что участок ветви, в котором был источник ЭДС, замыкается накоротко (рис. 4.16а), а участок с источником тока размыкается (рис. 4.16б). Затем находят фактические токи в ветвях путем алгебраического сложения частичных токов. Если направление частичного тока совпадает с выбранным направлением фактического тока, то при суммировании частичный ток берется со знаком “ + ”, иначе “ - ”.
|