![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
1. В углах при основании равнобедренного треугольника с боковой стороной 8 см расположены заряды Q1 и Q2. Определить силу, действующую на заряд Q2 равный 1нКл, помещенный в третью вершину треугольника, угол при которой 120°. Рассмотреть случаи: а) Q1= Q2 = 2 нКл; б) ½Q1½=½-Q2 ½= 2 нКл. Решение. В соответствии с принципом суперпозиции поле каждого из зарядов Q1 и Q2 действует на заряд Q3 независимо. Это значит, что на заряд Q3 действуют силы (рис. 1, а): В случае разноименных зарядов Q1 и Q2 из рис.1,б видно, что угол b = 60° и, следовательно, F2=4,8×10-6 Н.
2. Два равных отрицательных заряда по 9 нКл находятся в воде на расстоянии l=8 см друг от друга. Определить напряженность и потенциал поля в точке, расположенной на расстоянии h=5 см от линии, соединяющей заряды. Решение. Напряженность поля, создаваемого в точке А (рис.2) зарядами Q1 и Q2 по принципу суперпозиции полей, равна векторной сумме напряженностей, создаваемых каждым из зарядов:
Напряженность поля точечного заряда Q: Ответ: Е = 480 В/м; 3. Заряд 1 нКл переносится в воздухе из точки, находящейся на расстоянии 1 м от бесконечно длиной равномерно заряженной нити, в точку на расстоянии 10 см от нее. Определить работу, совершаемую против сил поля, если линейная плотность заряда нити 1 мкКл/м. Какая работа совершается на последних 10 см пути? Решение. Работа внешней силы по перемещению заряда Q из точки поля с потенциалом Бесконечная равномерно заряженная нить с линейной плотностью заряда t создает аксиально-симметричное поле напряженностью Подставляя в формулу (1) найденное выражение для разности потенциалов из (2), определим работу, совершаемую внешними силами по перемещению заряда из точки, находящейся на расстоянии 1 м, до точки, расположенной на расстоянии 0,1 м от нити: Ответ: А1 = 4,1×10-5 Дж; А2 = 1,25×10-5Дж. 4. К одной из обкладок плоского конденсатора прилегает стеклянная плоскопараллельная пластинка (e=7) толщиной 9 мм. После того как конденсатор отключили от источника напряжения 220 В и вынули стеклянную пластинку, между обкладками установилась разность потенциалов 976 В. Определить зазор между обкладками и отношение конечной и начальной энергии конденсатора. Решение. После отключения конденсатора и удаления стеклянной пластинки заряд на его обкладках остается неизменным, т.е. выполняется равенство: где С1 и С2 – электроемкости конденсатора в начальном и конечном случае. По условию конденсатор вначале является слоистым и его электроемкость определяется по формуле: где S – площадь обкладок; d0 – зазор между ними, d1 – толщина стеклянной пластинки; ε1 и ε2 – диэлектрические проницаемости стекла и воздуха соответственно. После удаления стеклянной пластинки электроемкость конденсатора: Подставляя (2) и (3) в (1), получим:
Ответ: d0 = 10-2 м; W2/W1 = 4,44. 5. Батарею из двух конденсаторов емкостью 400 и 500 пФ соединили последовательно и включили в сеть с напряжением 220 В. Потом батарею отключили от сети, конденсаторы разъединили и соединили параллельно обкладками, имеющими одноименные заряды. Каким будет напряжение на зажимах полученной батареи? Решение. У последовательно соединенных конденсаторов заряды на обкладках равны по модулю Q1 = Q2 = Q и заряд батареи равен заряду одного конденсатора. Емкость батареи последовательно соединенных конденсаторов определяется по формуле: При отключении конденсаторов их заряд сохраняется. У параллельно соединенных конденсаторов заряд батареи равен сумме зарядов конденсаторов Q' = Q1 + Q2, а емкость сумме емкостей: Подставляя (1) в (2), получаем: Ответ: 6. Заряд конденсатора 1 мкКл, площадь пластин 100 см2, зазор между пластинками заполнен слюдой. Определить объемную плотность энергии поля конденсатора и силу притяжения пластин. Решение. Сила притяжения между двумя разноименно заряженными обкладками конденсатора: где Е – напряженность поля конденсатора; S – площадь обкладок конденсатора; ε – диэлектрическая проницаемость слюды; ε0 – электрическая постоянная. Напряженность однородного поля плоского конденсатора: где Подставляя (2) в (3), получаем: Ответ: 7. В медном проводнике сечением 6 мм и длиной 5 м течет ток. За 1 мин в проводнике выделяется 18 Дж теплоты. Определить напряженность поля, плотность и силу электрического тока в проводнике. Решение. Для решения задачи используем законы Ома и Джоуля-Ленца. Закон Ома в дифференциальной форме имеет вид: где j – плотность тока; Е – напряженность поля; γ – удельная проводимость. Закон Джоуля-Ленца: здесь I – сила тока, t – время. Ответ: 8. Внутреннее сопротивление аккумулятора 2 Ом. При замыкании его одним резистором сила тока равна 4 А, при замыкании другим – 2 А. Во внешней цепи в обоих случаях выделяется одинаковая мощность. Определить электродвижущую силу аккумулятора и внешние сопротивления. Решение. Закон Ома для замкнутой (полной) цепи имеет вид:
где r – внутреннее сопротивление источника тока; ξ – э.д.с. аккумулятора; R1 и R2 – внешние сопротивления цепей. Уравнения (1) представим в виде:
Из равенства (2) следует, что:
Мощность, выделяемая во внешней цепи в первом и втором случаях, cоответственно равна:
Решая совместно уравнения (3) и (4), получаем:
Подставляя (5) в (2), получаем: Ответ: 9. Электродвижущая сила батареи равна 20 В. Коэффициент полезного действия батареи составляет 0,8 при силе тока 4 А. Чему равно внутреннее сопротивление батареи? Решение. Коэффициент полезного действия источника тока η равен отношению падения напряжения во внешней цепи к его электродвижущей силе: Ответ: 10. По двум бесконечно длинным прямолинейным проводникам, находящимся на расстоянии 50 см друг от друга, в одном направлении текут токи Решение. В соответствии с принципом суперпозиции индукция результирующего магнитного поля в точке А равна: Ответ: 11. Электрон, пройдя ускоряющую разность потенциалов 88 кВ, влетает в однородное магнитное поле перпендикулярно его линиям индукции. Индукция поля равна 0,01 Тл. Определить радиус траектории электрона. Решение. В магнитном поле на электрон, движущийся со скоростью Ответ:
Решение. Поле внутри соленоида можно считать однородным. В этом случае напряженность поля: Ответ: В =1,7 Тл, Тл. 13. На соленоид (см. условие и решение задачи 12) надето изолированное кольцо того же диаметра. Определить электродвижущую силу индукции в кольце и электродвижущую силу самоиндукции в соленоиде, если за 0,01 с ток в его обмотке равномерно снижается до нуля. Решение. По условию за время ∆t = 0,01 с сила тока в обмотке соленоида равномерно уменьшается от 0,1 А до нуля, поэтому магнитный поток, пронизывающий площадь кольца Ответ: 14. Виток радиусом 5 см с током 1 А помещен в однородное магнитное поле напряженностью 5000 А/м так, что нормаль к витку составляет угол 60° с направлением поля. Какую работу совершат силы поля при повороте витка в устойчивое положение? Решение. Работа А при повороте витка с током Ответ:
|