Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Обратная задача кинематики




Читайте также:
  1. IV. Работа над задачами.
  2. IV. Работа над задачами.
  3. IV. Работа над задачами.
  4. IV. Работа над задачами.
  5. IV. Работа над задачами.
  6. V. Работа над задачами.
  7. V. Работа над задачами.
  8. V. Работа над задачами.
  9. V. Работа над задачами.
  10. V. Работа над задачами.

Задача кинематики бывает прямой и обратной.
В прямой задаче задается закон движения г (t), из

которого требуется получить все кинематические
характеристики движения материальной точки:

Обратная задача гораздо сложнее прямой. Это
связано не только с тем, что при ее решении
необходимо овладеть навыками интегрирования
(интегрировать всегда сложней, чем вычислять
производную), но, в основном, с тем, что заданное
ускорение а зависит, как правило, не только от
времени t, но и от координат и скорости
движущейся частицы. В результате решение
подобной задачи сводится, как правило, к
решению дифференциальных уравнений. В
простейшем случае, когда заданное ускорение а
зависит лишь от времени, решение обратной
задачи выглядит следующим образом. Из (1.4)
dv = adt, следовательно,


Далее из (1.2а) следует, что dr = vdt, поэтому


Результат интегрирования правой части
зависит от конкретного вида зависимости а от t.
В частности, при равноускоренном движении,
когда а = const


Путь, пройденный за время t, находится с
помощью формулы (1.3), записанной в виде

Так как s(t0) = 0, следовательно,











где под интегралом (не следует забывать!)

а затем интегрируют






Интеграл


в принципе вычисляется.


 


Дата добавления: 2014-10-31; просмотров: 35; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.017 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты