Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Лекция 4. РАБОТА И ЭНЕРГИЯ




Читайте также:
  1. E) Работа в цикле
  2. II. Работа над текстом и его оформление
  3. IV. Работа над задачами.
  4. IV. Работа над задачами.
  5. IV. Работа над задачами.
  6. IV. Работа над задачами.
  7. IV. Работа над задачами.
  8. IV. Работа над новым материалом.
  9. IV. Работа над новым материалом.
  10. IV. Работа над новым материалом.

Работа постоянной и переменной силы; теорема о кинетической энергии;
потенциальные силы; потенциальная энергия; закон сохранения энергии.


1. Работа постоянной и переменной
силы

Из школьного курса физики мы знаем, что при
движении частицы по прямолинейной траектории
постоянная по величине и направлению сила

f совершает над частицей работу

где f — модуль силы, As — отрезок
прямолинейного пути и а — угол между
направлениями силы и перемещения. Выражение
(4.1) можно записать в виде


Интеграл в правой части (4.3) называется
криволинейным интегралом 1-го рода.Из (4.3)
следует, что при движении частицы из точки 2 в
точку 1 по той же самой траектории работа силы

f :

Вспомним теперь, что ds = |dr|, где dr —
вектор бесконечно малого перемещения. Тогда


 


где fs — проекция силы на перемещение. Из
определения работы видно, что последняя может
быть как положительной, когда fs>0, так и
отрицательной, когда fs<0, и равной нулю, когда
сила перпендикулярна перемещению.

Спрашивается, как найти работу силы f ,
которая в разных точках траектории движения
различна по величине и направлению (говорят,
что частица движется в неоднородном силовом

поле f(x,y,z))r а сама траектория криволинейна
(см. рис.4.1).

Поступают следующим образом. Всю
траекторию от начальной точки 1 до конечной 2
разбивают на бесконечно малые участки ds,
которые в силу своей бесконечной малости можно
считать прямолинейными. Опять же в силу того,
что путь ds бесконечно малый, можно считать, что

сила f остается постоянной как по величине, так и
по направлению на этом участке пути ds. Тогда,


Работа же силы f на конечном участке траектории от начальной точки 1 до конечной 2

согласно (4.1), элементарная работа силы f на
пути ds


Последний интеграл называется


Дата добавления: 2014-10-31; просмотров: 11; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты