КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ВВЕДЕНИЕ. ТБАГ–тетрабутиламмоний гидросульфатСтр 1 из 8Следующая ⇒ ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ 15К5 – 15-Краун-5 Ме – метил ТБАГ–тетрабутиламмоний гидросульфат ТГБК – тетрагидро-β-карболин ТГИ – тетрагидроимидазопиридин ТГИХ – тетрагидроизохинолин ТСХ – тонкослойнаяхроматография ТЭБАХ – бензилтриэтиламмоний хлорид ХС – химический сигнал ЯМР – ядерный магнитный резонанс LD50 – средняя доза вещества, вызывающая гибель половины членов испытуемой группы Ph – фенил ВВЕДЕНИЕ Производные изохинолина более столетия остаются популярными объектами исследования для различных областей химии и медицины. Фрагмент изохинолина входит в состав изохинолиновых алкалоидов, обладающих физиологической активностью и поэтому представляющих интерес, как лекарственные средства. Например, к производным N-бензилизохинолина относятся гидрохлорид опиумного алкалоида папаверина и его синтетический аналог - дротаверин (но-шпа). Современные исследования на сегодняшний день направлены на изучение гипотензивной активности производных изохинолина. Основываясь на влиянии производных изохинолина на процессы свертывания крови, синтезируются новые прекурсоры лекарственных препаратов, в частности тиклид, представляющий собой по структуре тиофеновый аналог N‑бензилизохинолина [1]. С целью поиска новых лекарственных средств актуальным остается разработка новых подходов к синтезу гетероциклических соединений ряда изохинолина. Следует отметить также, что на сегодняшний день представляет интерес и изучение особенностей оптической изомерии гетероциклических соединений, а также её влияния на фармакологическую активность лекарственных соединений [2]. Введение углеводных остатков в молекулы подобных гетероциклических биологически активных соединений или природных соединений позволит решить ряд важных научных и практических задач. Так, гликозилирование антибиотиков, противоопухолевых, антивирусных препаратов модифицировало действие исходных гликозил-акцепторов по сравнению с негликозилированными аналогами. Применяемые в этих целях моно- или олигосахариды, как правило, не токсичны для организма человека и животных, что делает такой способ модификации весьма перспективным. Синтезировано большое количество как 1,2-транс-, так и 1,2-цис-гликозидов, пригодных для подобных исследований. Несмотря на значительные успехи, достигнутые в гликозидном синтезе, универсальных подходов, регио- и стереоселективно, и с высокими выходами приводящих к гликозидам определенного строения, не существует. Поэтому в химии аномерного центра центральное место занимает развитие существующих и разработка новых селективных и эффективных методов построения гликозидной связи [3]. В 60-х годах прошлого века были сформулированы основные принципы межфазного катализа [4-7]. В настоящее время можно сказать, что по широте охвата типов химических реакций катализ в двухфазных системах представляет собой уникальное явление, и широко применяется в тонком и малотоннажном органическом синтезе. Данный подход нашел широкое распространение и в химии углеводов, наряду с известными методами гликозидного синтеза [3-6]. Наряду с очевидным достоинством межфазного катализа – высокие выходы продуктов и стереоспецифичностью, следует отменить и существенные недостатки – использования избытка реагентов и водных растворов оснований, затрудняющих гликозилирование соединений, неустойчивых в этих условиях. Но, несмотря на это, межфазные каталитические процессы остаются весьма ценными в синтетической химии углеводов. Таким образом, целью настоящей дипломной работы является синтез гликозидов N-ацетил-D-глюкозамина с агликонами пиразолоизохинолинов с использованием каталитической межфазной системы «твердое тело – органический растворитель» для изучения их медико-биологические свойства.
|