КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ⇐ ПредыдущаяСтр 8 из 8 Ранее сотрудниками кафедры органической и биологической химии было показано успешное применение межфазной системы «твердый К2СО3 – безводный CH3CN» с использованием краун-эфира для получения широкого ряда β-D-глюкозаминидов с агликонами различной природы [33-36]. Этот подход позволил синтезировать фенилглюкозаминиды, несущие в о-, м- и п-положениях ароматического ядра различные гетероароматические радикалы, такие как 1,3,4-оксдиазол-5-ил, хинолин-4-ил, хиназолин-4-ил. Таким образом, обсуждаемый способ построения 1,2-транс-глюкозаминидной связи может быть эффективным инструментом для введения углеводных остатков в молекулы гетероциклических соединений на основе изохинолина – пиразолоизохинолинов, и позволит получить глюкозаминиды для дальнейшего изучения спектра их биологических свойств. Глюкозаминилирование пиразолоизохинолинов 74, 76, 78, 80 α-D-глюкозаминилхлоридом 73 проводили в межфазной системе «твердый К2СО3 – безводный CH3CN» с использованием катализатора 15К5 при комнатной температуре. Реакция протекала в течение 2-3 ч при стехиометрическом соотношении гликозил-донора и пиразолоизохинолина, 4,5-кратном избытке основания (по субстрату – хлориду 73) и 20 моль% краун-эфира. Во всех случаях, в реакционной среде по данным тонкослойной хроматографии присутствовали следовые количества оксазолина и ряд не идентифицированных продуктов деструкции углеводов. Выходы глюкозаминидов 75, 77, 79, 81 после колоночной хроматографии составили 49-66%. Строение целевых соединений 75, 77, 79 доказано 1Н ЯМР ‑ спектроскопией. В 1Н ЯМР спектрах соединений 75, 77, 79 однозначно идентифицированных как О-β-глюкозаминиды (дублеты аномерных протонов в области 5,49-5,55 м.д. с КССВ 8,0 Гц). В спектрах также идентифицированы сигналы скелетных протонов, протонов О- и N-ацетильных защитных групп углеводного остатка, сделано отнесение сигналов как протонов углеводного остатка, так и протонов агликонов. Пиразолоизохинолин 80, содержащий свободный атом азота пиразольного цикла, в реакции гликозилирования может привести к образованию второго основного продукта реакции - бис-производного с различной природой гликозидной связи. Было обнаружено, что конверсия α-D-глюкозаминилхлорида 73в условиях межфазного катализа сопровождалась образованием только одного основного продукта О-гликозида 81, выход которого составил 42%. В данных условиях атом азота пиразольного цикла не участвовал в реакции, что однозначно подтверждено наличием в1Н ЯМР спектре глюкозаминида 81синглета протона группы NH пиразольного цикла с ХС 13,29 м.д. 1,2-транс-Диаксиальное расположение протонов в остатке N-ацетилглюкозамина подтверждается величиной КССВ 8,0 Гц и ХС 5,50 м.д. Сравнение области протонов углеводного остатка в 1Н ЯМР спектре гликозида 75 с аналогичными областями в спектрах соединений 75, 77, 79 показало однотипное расположение сигналов. Для введения остатка N-ацетилглюкозамина по свободному атому азота пиразольного цикла, реакцию α-D-глюкозаминилхлорида 73 с пиразолоизохинолином 82 проводили с использованием бромида ртути(II) [37, 38]. Выход целевого N-гликозида 83 оказался невысоким – 10%, что связано с заметной деструкцией гликозил-донора в условиях реакции. Таким образом, очевидна перспективность продолжения исследований в данном направлении для оптимизации условий реакции глюкозаминилирования пиразолоизохинолина 82.В 1Н ЯМР спектре N-b-гликозида 83 наблюдалось значительное смещение в слабое поле сигнала аномерного протона (d 6,49 м.д.) по сравнению с дублетами Н-1 глюкозаминидов пиразолоизохинолинов 75, 77, 79,81(рис. 1). При этом КССВ составила 8,0 Гц. В спектре идентифицированы сигналы скелетных протонов, протонов О- и N-ацетильных защитных групп углеводного остатка, а также сигналов ароматических протонов агликона с ХС 7,55 и 7,56 м.д. Таким образом, пиразолоизохинолины 74,76,78, 80 являются удобными объектами исследования межфазных процессов гликозилирования с целью получения глюкозаминидов для изучения их медико-биологических свойств. Рис. 1. Область сигналов скелетных протонов в 1Н ЯМР спектрах соединений 75 и 83.
ВЫВОДЫ 1. Осуществлен синтез в условиях межфазного катализа глюкозаминидов пиразолоизохинолинов. 2. Установлено, что в обсуждаемом межфазном процессе наблюдается образование только O-β-D-2-ацетамидо-2-дезоксиглюкопиранозидов пиразолоизохинолинов. 3. Получен новый N-β-глюкозаминид пиразолоизохинолина. СПИСОК ЛИТЕРАТУРЫ 1. Использование производных изохинолина в качестве лекарственных средств 2. Алексеев В. В. Оптическая изомерия и фармакологическая активность лекарственных препаратов / В. В. Алексеев // Военно-медицинская академия. Журн. – 1998.– № 1. – С. 49-55. 3. Phase-transfer catalyzed synthesis of acetylated aryl β-D-glucopyranosides and aryl β-D-galactopyranosides / D. Dess, H. Kleine, D. Weinderg [et al.] // Synthesis. – 1981. – № 11. – P. 883-885. 4. Roy R. Stereospecific synthesis of aril β-D-N-acetylglucopyranosides by phase-transfer catalysis / R. Roy, F. Tropper // Synth. Commun. – 1990. – Vol. 20, № 14. – P. 2097-2102. 5. Lewis P. T. Regiospecific 4-O-β-glucosidation of isoflavones / P. T. Lewis, K. Wähälä // Tetrahedron Lett. – 1998. – Vol. 39. – P. 9559-9562. 6. Грагеров И. П. Краун-соединения в органическом синтезе./ И. П. Грагеров. – Киев: Наукова думка, 1994. – 345 с. 7. Jensen K. J. O-Glycosylations under neutral or basic conditions / K. J. Jensen // Chem. Soc., Perkin Trans. – 2002. – № 1. – P. 2219-2233 8. Royer J. Chiral heterocycles by iminium ion cyclization / J. M. Royer, L. Bonin // – Chem. Rev. – 2004. – Vol. 104, № 5. – P. 2311-2352. 9. Cox E. D. The Pictet-Spengler condensation: a new direction for an old reaction / E. D. Cox, J. Cook // – Chem. Rev. – 1995. – Vol. 95, № 9. – P. 1797-1842. 10. Tsuji R. An efficient synthetic approach to optically active β-carboline derivatives via Pictet–Spengler reaction promoted by trimethylchlorosilane / R. Tsuji, M. Nakagawa, A. Nishida // Tetrahedron Asymmetry. – 2003. – Vol. 14, № 2. – P. 177-180. 11. Jiang W. Synthesis of optically pure pyrroloquinolones via Pictet–Spengler and Winterfeldt reactions / W. Jiang, Z. Sui, X. Chen // Tetrahedron Lett. – 2002. – Vol. 43, № 16. – P. 8941-8945. 12. Waldmann H. Asymmetric steering of the Pictet–Spengler reaction by means of amino acid esters as chiral auxiliary groups / H. Waldmann, G. Schmidt, M. Jansen [et al.] // Tetrahedron. – 1994. – Vol. 50, №47. – P. 11865-11884. 13. Kaljuste K. Solid phase synthesis of 1,2,3,4-tetrahydro-β-carbolines; implications for combinatorial chemistry / K. Kaljuste, A. Unden // Tetrahedron Lett. – 1995. – Vol. 36, № 50. – P. 9211-9214. 14. Connors R. V. The regio- and stereoselective addition of carbon nucleophiles to trifluoromethylphenylsulfanyl acetylene: a novel and expeditious approach to 3-trifluoromethylfurans / R. V. Connors, A. J. Zhang, S. J. Shuttleworth // Tetrahedron Lett. – 2002. – Vol. 43, № 4. – P. 665-667. 15. Solid phase sequential 1,3-dipolar cycloaddition Pictet–Spengler reactions / H. A. Dondas, R. Grigg, W. S. MacLachlan [et al.] // Tetrahedron Lett. – 2000. – Vol. 41, № 6. – P. 967-970. 16. Klein C. Solid-phase synthesis of new fused tetra, penta and hexa-cyclic:-carboline derivatives / C. Klein, J.M. Ostrech, A. Nefzi // Tetrahedron Lett. – 2003. – Vol. 44, № 10. – P. 2211-2215. 17. Hutchins S. M. Solid phase synthesis of tetrahydroisoquinolines&tetrahydroimidazopyridines / S. M.Hutchins, K. T.Chapman // Tetrahedron Lett. –1996. – Vol. 37, № 28. – P. 4865-4868. 18. Циклизации N-гетарил-5-аминопиразолов в реакциях азосочетания и пикте-шпенглера / С. Ю. Зинченко, С. В. Гресько, С. Ю. Суйков [и др.] // Науковіпраці ДонНТУ. – 2008. – № 137(11). – С. 82-92. 19. Богза С. Л. Взаимодействие орто-арилзамещенных аминоазолов с бензальдегидами. / С. Л. Богза // Cтруктура органических соединений и механизмы реакций – 1999. – Т. 2. – С. 25-30. 20. A versatile synthesis of pyrazolo[3,4 - c]isoquinoline derivatives by reaction of 4 ‑ aryl 5- amino-pyrazoles with aryl/heteroaryl aldehydes: the effect of heterocycle on the reaction pathways / S. L. Bogza, K. I. Kobrakov, A. A. Malienko [et.al] // J. Org. Biomol. Chem., 2005. – № 3. – P. 932-940. 21. Богза С. Кислотні циклізації аміноазолів. Синтез поліядерних гетероциклів з фрагментами ізохіноліну та цинноліну / С. Богза, С. Зинченко, С. Суйко // Вісник наукового товариства ім. Шевченка. Донецьке відділення. Хімія, – 2006. – Т. 10. – С. 94-100. 22. Синтез 1,2-транс-арилгликозидов по Гельфериху при катализе ортофосфорной кислотой / Е. Р Новик., В. М. Соколов, Е. П. Студенцов [ и др.] // Журн. Общей химии. – 1986. – Т. 56, вып 1. – С. 181-187. 23. Бочков А. Ф. Образование и расщепление гликозидных связей / А. Ф. Бочков, В. А. Афанасьев. – М.: Наука, – C. 1978. – 180. 24. Konishi F. Synthesis and taste of some flavones and dihydrochalcone glycosides in which carbohydrate moieties are located at differing positions of the aglycones / F. Konishi, S. Esaki, Sh. Kamiya // Agric. Biol. Chem. – 1983. – Vol. 47, № 7. – P. 1419-1429. 25. Tanaka M. The rates of hydrolysis of some substituted phenyl 2-acetamido-2-deoxy-α- and –β-D-glucopyranozides / M. Tanaka, S. Kyosaka, Y. Ito // Chem. Pharm. Buii. – 1973. – Vol. 21, № 9. – P. 1971-1977 26. Rothermel J. Phase-transfer-catalyzedsynthesisof aryl(α-ketosides of N-acetylneuraminicacid / J. Rothermel, H. Faillard //Biochemie. – 1990.– № 190. – P. 29-40. 27. Лазарева Н. В. Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей / Н. В. Лазарева, Э. Н. Левина. – Л.: Химия, 1976. – Т. 1. –. C. 592. 28. Лазарева Н. В. Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей / Н. В. Лазарева, Э. Н. Левина. – Л.: Химия, 1976. – Т. 2. –. C. 624. 29. Лазарева Н. В. Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей / Н. В. Лазарева, Э. Н. Левина. – Л.: Химия, 1976. – Т. 3. – C. 608. 30.Лазарева Н. В. Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей / Н. В. Лазарева, Э. Н. Левина. – Л.: Химия, 1976. – Т. 3. – C. 384. 31. Хираока М. Краун-соединения / М. Хираока. – М.: Мир, –. C. 1986. – 363. 32. Симонович С. В. Компьютер в вашей школе / С. В. Симонович. – М.: Информком-Пресс, –. C. 2001. – 336. 33. Особенности межфазного каталитического гликозилирования салициловой кислоты / Т. А Чупахина., Ю. H. Гончаренко, В. О. Курьянов [и др.] // Ученые записки ТНУ. – 2011. – Т. 24(63), № 2. – С. 396-401. 34. Синтез арил-О-β-D-глюкозаминидов и оценка их биологической активности в тесте ингибирования биолюминисценции морских светящихся бактерий / В. О. Курьянов, А. М. Кацев, Т. А. Чупахина [и др.] // Журнал орг. та фармхімії. – 2009. – Т. 7, вип. 4(28). – С. 30-40. 35. Чупахина Т. А. Синтез и исследование антимикробной активности глюкозаминидов 8-гидроксихинолинов / Т. А. Чупахина, А. М. Кацев, В. О Курьянов // Биоорган. химия. – 2012. – Т. 38, № 4. – С. 482-488. 36. Синтез гетероароматических S- и N-β-гликозидов N-ацетилглюкозамина в межфазных условиях / В. О. Курьянов, Т. А. Чупахина, А. Е. Земляков [и др.] // Биоорган. химия. – 2012. – Т. 38, № 4. – С. 482-488. 37. Bräuniger H. Benzazolglycoside. IV. Darsterllung von 1-β-D glucosaminopyranosyl-benzazolen / H. Bräuniger, A. Koine // Arch. Pharmaz. und Ber. Dеtsch. pharmaz. Ges. – 1965. – B. 298, № 9. – S. 768-777. 38. Zinner H. Benzazole. XIX. Glycoside des benzthiazolthions / H. Zinner, K. Peseke // Chem. Ber. – 1965. – B. 98, № 11. – S. 3508-3514.
|