Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Современные представления о структуре и свойствах кератина




Высокая стабильность и нерастворимость кератина обусловлена большим числом поперечных дисульфидных связей между его пептидными цепями. Разрыв поперечных дисульфидных связей кератина в результате окисления, восстановления или гидролиза приводит к образованию растворимого продукта, расщепляющегося протеолитичеекими ферментами. Восстановленный кератин, содержащий вместо остатков цистина остатки цистеина, был назван кератеином. Его можно окислить и вновь получить кератин. Временное восстановление кератина волос тиогликолем или тиогликолятом и последующее окисление кислородом воздуха используется для завивки волос (перманент).

Устойчивость кератина к растворителям и ферментам понижается не только под действием химических реагентов, разрывающих дисульфидные мостики, но также и в результате механических воздействий. Тонко перемолотая шерсть частично растворима в воде и расщепляется под действием протеолитических ферментов. При кипячении шерсти в 2%-ном углекислом натрии происходит гидролиз дисульфидных связей с образованием сульфида.

Длина волокон кератина зависит от содержания в них воды; увеличение длины влажного волоса позволяет использовать его в гигрометре для измерения влажности воздуха. Кератиновые волокна поддаются растяжению и обладают эластическими свойствами. Растяжение волокон шерсти сопровождается понижением изоэлектрической точки кератина с рН 5,5 до 5,3. Кератин, имеющий вытянутые волокна, был назван β-кератином.

При нагревании шерсти с водой ее волокна необратимо сокращаются (при температуре около 90°). Поскольку такое нагревание не затрагивает поперечных S-S-связей, эта реакция должна быть отнесена за счет разрыва каких-то иных межцепочных связей. Это могут быть либо водородные связи, либо связи между гидрофобными группами, либо солевые мостики между положительно и отрицательно заряженными группами. Кератин очень богат кислыми и основными аминокислотами. Вполне возможно, что эти аминокислоты тоже вносят свой вклад в поперечное связывание пептидных цепей; их разрыв при нагревании ведет к сверхсокращению [1].

Кератин входит в состав рогового вещества, содержится в волосе, рогах, ногтях, перьях, копытах, роговом слое эпидермиса. Он в значительной степени изменяется в зависимости от условий образования и процессов, протекающих при жизни организма. Кератин отличается от других белков содержанием большого количества цистина, а, следовательно, и серы. Однако белковое вещество сердцевины волоса отличается низким

содержанием цистина и серы. Кератин подразделяют на мягкий,

содержащийся в небольшом количестве в наружных слоях эпидермиса,

сердцевине волоса, и твердый , содержащийся в волосе, рогах, ногтях и т. д.

Мягкий кератин отличается меньшим серосодержанием (2-3% серосодержащих аминокислот), менее структурирован и менее устойчив к химическим воздействиям, чем твердый – высоко сульфидный (18%серосодержащих аминокислот), имеющий высокодифференцированную морфологическую структуру.

Таблица 1 - Элементарный состав кератина

Углерод 50,65
Водород 7,03
Азот 17,70
Кислород 20,00
Сера 6,10

 

Аминокислотный состав изменяется в зависимости от типа кератина.

Особенностями аминокислотного состава кератина являются:

1) значительное содержание серосодержащих аминокислот цистина и

Цистеина (для твердых кератинов):

 

NH2 NH 2 NH2

| | |

HC –CH2 – S – S – CH2 – CH HC – CH2 - SH

| | |

COOH COO H COOH

 

Цистин Цистеин

 

2) большое содержание моноаминодикарбоновых и

диаминомонокарбоновых кислот;

3) значительное количество оксикислот (серинаитреонина);

4) отсутствие оксипролина;

5) очень малое количество оксилизина (некоторые исследователи его в кератине не обнаружили).

В структуре кератина присутствуют три вида связей:

1. Водородные связи – представляют собой взаимодействие между NH2 и СООН группами. Энергия водородных связей мала (6-8 ккал/моль) и разрушается под действием гидро - термических нагрузок и щелочей. Эта связь является обратимой, их количество в структуре очень велико и они выполняют стабилизирующую функцию.

2. Электровалентные (ионные) связи. Энергия этих связей в десять раз больше (80-100 ккал/моль) и они разрушаются при температуре более 60-70 °С и действии кислот. Эта связь также является обратимой.

3. Ковалентные связи- -- CO – NH – К ним относят: пептидную, амидную и ди сульфидную связи. На строение и свойства кератина, а также на изменения его при различных обработках влияет взаимодействие между главными цепями. Главными молекулярными цепями кератина являются цепи, образованные аминокислотными остатками, соединенные пептидными связями.

Дисульфидные связи существенно влияют на физико-механические свойства волокон. Кроме того, цистин может также участвовать в образовании связей в одной и той же пептидной цепи. Такой цистиновый остаток называют инсулиноподобным. Дисульфидная группа в этом случае не образует поперечную связь, а является дополнительной связью в одной полипептидной цепи, размещаясь параллельно оси.На основании рентгеноструктурного анализа ряд зарубежных и отечественных ученых сделали вывод, что кератин может существовать в трех формах: a-, b- и сверх сокращенной, которые прежде всего различаются длиной цепи. Кератин шерсти в нативном состоянии имеет a-форму. a-кератин превращается в b-кератин при растягивании волокна в горячей воде и атмосфере пара. Если растянуть волос в атмосфере пара до определенной длины, а затем снять растягивающую нагрузку или подвергнуть волос воздействию некоторых реагентов в определенных условиях, он сокращается примерно до 2/3 от первоначальной длины. Это явление называют сверх сокращением. В нативном кератине шерсти белки полипептидные цепи в форме a -спиральной спирали. Эти цепи упакованы вместе по три цепи путем взаимного их закручивания по спирали. Такая система из трехa-спиральных цепей, закрученных в спираль, для кератина называется протофибриллой. Микрофибриллы расположены пучками, параллельно оси (длине) волокна шерсти, а цепи с большим содержанием цистина заполняют пространство между микрофибриллами и связывают всю систему, образуя макрофибриллу. Кератины фибрилл, помимо резко пониженного содержания цистина, отличаются также пониженным содержанием пролина и треонина и повышенным содержанием аланина, лейцина, а также дикарбоновых аминокислот(аспарагиновой и глутаминовой ), характеризуются повышенной химической устойчивостью, значительной термоустойчивостью и тенденцией к образованию ориентированных упорядоченных структур. Кератины межфибриллярного вещества характеризуются резко повышенным содержанием цистина и пролина, более высоким содержанием гидроксилсодержащих аминокислот (за исключением тирозина) и пониженным содержанием лейцина, аспарагиновой кислоты и лизина и слабой тенденцией к образованию ориентированных упорядоченных структур. Существенное влияние на структурное формирование белков фибрилл межфибриллярного вещества оказывает различное содержание в них цистиновых и пролиновых остатков. Пониженное содержание этих остатков в кератинах фибрилл способствует образованию в них упорядоченных α-спиральных укладок полипептидных цепочек, кристаллических зон, в то время как повышенное содержание цистиновых и пролиновых остатков в кератинах межфибриллярного вещество обуславливает их аморфный характер. Последовательность расположения аминокислотных остатков в a-спиралях такова, что в некоторых участках спиралей находятся боковые цепи, содержащие свободные карбоксильные и аминогруппы и гидроксилы, по месту которых образуются солевые и водородные связи. Поэтому в продольном направлении фибрилла неоднородна. В ней чередуются участки с незначительным развитием поперечных связей и участки с интенсивным развитием поперечных связей. Полипептидные спиральные цепи цементирующего вещества имеют неупорядоченное расположение, преимущественно глобулярную форму и образуют небольшое количество межмолекулярных связей. Цистиновые остатки в матриксе распределяются не локализовано, как в кератинах фибрилл, а равномерно и образуют преимущественно внутри цепочечные дисульфидные связи. Солевые и водородные связи образуются также в пределах одной цепи, что способствует его глобулярной конформации. В кератине матрикса преобладают основные аминокислотные остатки, в кератине фибрилл — кислотные. Поэтому между кератином фибрилл и цементирующего вещества возможно ионное взаимодействие и даже образование более прочных связей. Кератин микрофибрилл менее химически активен, чем кератин матрикса. А также более инертен по отношению к влаге, в то время как кератин межфибриллярного вещества способен энергично сорбировать влагу. Волокна шерсти имеют значительное сродство к воде. Водоотталкивающие свойства зависят преимущественно от природы поверхности волокон, гидратация и набухание кератина происходят внутри волокна. Гидрофобность кератина отчасти связана с высоким содержанием гидрофобных аминокислот: фенилаланина, изолейцина. При этом гидрофобные радикалы направлены наружу по отношению к a-спиралями b-слоям. При насыщении волокна шерсти водой его диаметр увеличивается примерно на 17,5 – 18 %, длина— на1,2 – 1,8%. Скорость реакции воды с кератином при температуре 100°С невелика; при кипячении в течение 24 ч кератин теряет 20 % цистина и после обработки в кипящей воде в течение 21 дня– 75 %. После нагревания при температуре 130°С в течение 10 мин или при температуре 100°С в течение 8 дней кератин дает рентгенограмму дезориентированного b-кератина. При сухом нагреве кератин подвергается значительно меньшим изменениям, чем в присутствии воды. Волос в основном сохраняет химические и физические свойства после нагревания при температуре 120 °С в течение 24 ч. В процессе нагрева при температуре выше 100 °С в кератине образуются новые поперечные связи между карбоксильными и аминогруппами. Свойства кератина изменяются в результате сухого нагрева при температуре выше 160 °С . Кератин под влиянием кислот и щелочей может претерпевать изменения, связанные с гидролизом дисульфидных связей. Кератин более устойчив к действию кислот, чем к действию щелочей. Химические методы используют как для полного (тотального) гидролиза белков, так и для частичного, а в некоторых случаях, и для точечного (избирательного) разрыва пептидных связей. При обработке шерсти соляной кислотой при температуре 80 ° С в течение 8 часов гидролизуется около35 % пептидных связей. Волокна шерсти могут быть полностью гидролизованы в соляной кислоте при кипячении в течение 4 часов. Серная кислота при значительных ее концентрациях, кроме действия на различные функциональные группы и связи в кератине, влияет на остатки серина и треонина, содержащие гидроксильные группы. Растворимость кератина в щелочи зависит от ее концентрации, длительности обработки и температуры. В процессе обработки 0,1 н. едким натром при температуре 65 °С втечение 1 часа растворяется около 10 % волокон шерсти. Растворимость кератина в щелочи увеличивается, если предварительно разрушить в не пептидные и дисульфидные связи. Кератин обладает большой устойчивостью к действию ферментов. Однако после восстановления дисульфидных связей он подвергается ферментативному воздействию. Чувствительность к действию ферментов повышается при переходе a-кератина в b-кератин [1].

Кератин является специфическим веществом в эпителиальных тканях и еще содержится в волосах, роговице, ногтях, исключение - хрусталик. Кератин можно встретить еще где - то. Нервные ткани содержат кератин в виде нейрокератина, исключение - сетчатка и обонятельный нерв. Кератин выходит из белковых составляющих, замещая части кислорода белка компонентами серы. Кератин отличим своим составом от белка максимальным содержанием серы (Дрексель). Кератин способен разбухать в воде, удельный вес меньше уксусной кислоты и растворяется в щелочах и растворах калия и натрия. В числе продуктов разложения. Разлагаясь, дает, как все белки - аммиак, жирные кислоты, лейцины и тирозины, сероводород.

Кератина, в основе своей представляет омертвевшие клетки. Формируясь из отмерших клеток, все выталкивается вновь образовавшимися клетками наружу. Отмершие клетки служат прекрасным защитным слоем для вновь образуемого нежного слоя кератина, который образуется под ним.

Это вещество весьма стойкое к разрушениям и содержит дисульфид цистеина, что дает возможность формировать двусульфидные мосты. Эти цепочки представляют спиралеобразную конструкцию, которая весьма устойчива, на основании тесного расположению атомов серы в самой спирали - составляя волокнистую матрицу, где присутствует высокая степень растворимости. На основании от того, сколько дисульфид цистеина содержит кератина, само соединение очень сильное, чтобы образовывать твердые клетки такие же, как и те, что находятся в копытах. Они бывают мягче, придав кератину гибкость (волоса и кожа). При высоком уровне содержания серы в кератине, когда он сгорает - выделяется сильный запах серы, что является неприятным явлением.

Кератин производится кератиноцитами - живыми клетками, которые синтезируют кератин. Это является основой ногтей, кожи, волос. Клетки движутся вверх - умирают и формируют защитный барьер.

 


Поделиться:

Дата добавления: 2015-08-05; просмотров: 194; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты