Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Наблюдение и специфика его применения в современном естествознании




Современное естествознание характеризуется усилением в нем роли наблюдения. Основные причины этого явления такие:

1) развитие самого метода наблюдения: создаваемая для наблюдения аппаратура может длительное время работать в автоматическом режиме, управляться на расстоянии; ее подключение в ЭВМ дает возможность быстро и надежно обрабатывать данные наблюдений;

2) осознание научным сообществом того, что эксперименты над объектами, жизненно необходимыми для человечества, ставить нельзя. Это, в первую очередь, - океан и земная атмосфера. Их можно изучать только методом наблюдения;

3) возникновение новых возможностей наблюдения Земли с развитием космической техники. Наблюдения Земли из космоса позволяют получать информацию о целостных земных образованиях в интегративном виде, которые нельзя получить в условиях нахождения субъекта наблюдения на Земле. Они позволяют наблюдать целостные картины взаимодействий сразу нескольких подсистем Земли, наблюдать динамику ряда процессов на Земле;

4) вынос средств наблюдения за пределы атмосферы Земли и даже за пределы поля ее тяготения расширил возможность астрономических наблюдений. Так, с помощью автоматов удалось увидеть обратную сторону Луны, обозреть поверхность и окружение иных планет солнечной системы. Дело в том, что за пределами земной атмосферы отсутствует поглощение электромагнитного космического излучения в широком диапазоне частот атмосферой. После выноса инструментов за пределы земной атмосферы возникла и стала бурно развиваться рентгеновская и гамма-астрономия.

Что же такое научное наблюдение?

Наблюдение - это преднамеренное, планомерное восприятие какого-либо явления, осуществляемое с целью выявить его существенные свойства и отношения.

Наблюдение - это активная форма научной деятельности субъекта. Оно требует постановки задачи наблюдения, разработки методики его проведения, разработки способов фиксации результатов наблюдения и их обработки.

Возникающие задачи наблюдения вызваны внутренней логикой развития естествознания и запросами практики.

Научное наблюдение всегда связано с теоретическим знанием. Именно оно показывает, что наблюдать и как наблюдать. Оно задает и степень точности наблюдения.

Условия наблюдения должны обеспечивать:

а) однозначность замысла наблюдения;

б) возможность контроля либо путем повторного наблюдения, либо путем применения новых, иных методов наблюдения. Результаты наблюдения должны быть воспроизводимыми. Конечно, абсолютной воспроизводимости результатов наблюдений нет. Результаты наблюдений фиксируются лишь в рамках определенных научных знаний.

В процессе наблюдения субъект не вмешивается в природу наблюдаемого явления. Это порождает недостатки наблюдения как научного метода познания. Они такие:

1.Нельзя изолировать наблюдаемое явление от влияния затемняющих его сущность факторов. Понятие затемняющего фактора легко понять на примере свободного падения тел. Действительно, свободное падение тел показывает, что сопротивление воздуха явно влияет на характер движения тела, но оно не оказывает никакого влияния на зависимость этого движения от силы тяжести. Таким образом, затемняющий фактор - это фактор, от которого изучаемое явление не зависит, но который видоизменяет форму проявления изучаемого явления.

2.Нельзя воспроизводить явление столько раз, сколько требуется для этого изучения; необходимо ждать, когда оно повторится само.

3.Нельзя исследовать поведение явления в различных условиях, т.е. невозможно его всесторонне изучить.

Именно эти недостатки наблюдения и заставляют исследователя переходить к эксперименту. В заключение этого вопроса отметим, что в современном естествознании наблюдение все больше приобретает форму измерения количественной величины свойств системы. Результаты наблюдения фиксируются в протоколах. Ими выступают таблицы, графики, словесные описания и т.д. Получив протоколы наблюдения, исследователь пытается установить зависимости между теми или иными свойствами: количественные, следования во времени, сопутствия, взаимоисключения и т.д.

3 Метод эксперимента в современном естествознании»

Эксперимент - это метод познания, базирующийся на управлении поведением объекта с помощью ряда факторов, контроль за действием которых находится в руках исследователя.

Эксперимент не вытеснил полностью наблюдение. Наблюдение в условиях эксперимента фиксирует воздействие на объект и реакцию объекта. Без этого эксперимент идет вхолостую. Например, закон Ома для участка цепи гласит: для металлов и электролитов сила тока в цепи пропорциональна приложенному напряжению. Чтобы эту закономерность проверить экспериментально, надо менять напряжение в цепи и наблюдать (фиксировать), как при этом меняется сила тока..

Современный эксперимент теоретически нагружен. Действительно:

- в эксперименте используются приборы, а они представляют собой материализованный результат предшествующей теоретической деятельности;

- всякий эксперимент строится на основе какой-то теории, и если теория разработана хорошо, то заранее известно, к какому результату приведет эксперимент;

- эксперимент, как правило, дает не непрерывную картину процесса, а лишь его узловые точки. Только теоретическое мышление способно восстанавливать по ним весь процесс;

- при обработке данных экспериментов надо проводить усреднения, применять теорию ошибок.

Современные экспериментальные исследования обладают такими особенностями:

1. Невозможностью наблюдения исследуемых явлений с помощью только органов чувств субъекта-экспериментатора (низкие или высокие температуры, давление, вакуум и т.д.);

2. Естествознание XIX века старалось в эксперименте иметь дело с хорошо организованными системами, т.е. изучать системы, зависящие от небольшого числа переменных. Идеалом, например, физика-экспериментатора был однофакторный эксперимент. Его суть в следующем: предполагалось, что исследователь мог с любой степенью точности стабилизировать все независимые переменные изучаемой системы. Затем, поочередно изменяя некоторые из них, он устанавливал интересующие его зависимости. Вот пример однофакторного эксперимента. Рассмотрим газ, который находится при определенных температуре, давлении, объеме. Каждый из названных параметров системы (температура, давление, объем) можно сделать постоянным. Так можно, скажем, изучать изменение объема газа при изменении давления, если температура постоянная, т.е. провести изотермический процесс. Аналогично проводят изобарический и изохорический процессы.

Во второй же половине XX века возникла необходимость проводить эксперименты с диффузными, т.е. плохо организованными системами. Их особенность заключается в том, что в таких системах одновременно проходит несколько различных по своей природе процессов. Причем они настолько тесно связаны друг с другом, что их в принципе нельзя рассматривать изолированно друг от друга. Например, это физические процессы, которые происходят между катодом и анодом в лампе, это эмиссионный спектральный анализ и др.;

З. Использование фильтрующих приборов. Суть: далеко не все сигналы, выдаваемые экспериментально, имеют одинаковую ценность. Нередко трудно из большого количества информации выявить ту, которая является существенной. В таких ситуациях применяются фильтрующие приборы. Это автоматы, способные проводить отбор поступающих сигналов и выдавать исследователю ту информацию, которая нужна для решения поставленной задачи.

Пример. В физике микромира известно, что одна и та же частица может распадаться по нескольким каналам. Вероятности распадов по разным каналам различны. Некоторые из них ничтожно малы. Например, К+ -мезон распадается по семи каналам. Распад К+ - мезона, идущий с малой вероятностью, очень трудно зафиксировать, если результаты эксперимента обрабатывать вручную. Здесь-то и применяются фильтрующие приборы. Они автоматизируют поиск нужного вида распада элементарной частицы;

4. Для современных экспериментов характерны использование сложного оборудования, большой объем измеряемых и регистрируемых параметров, сложность алгоритмов обработки полученной информации.

Все эксперименты ставятся с такими целями:

1) для получения новых эмпирических данных, подлежащих дальнейшему обобщению;

2) для того, чтобы подтвердить или опровергнуть уже имеющиеся идеи и теории, причем надо уяснить, что эксперимент в теории подтверждает, а что нет.

В эксперименте проверяется не теория в целом, а ее наблюдаемые следствия. Посредством измерений сопоставляются две группы фактов: предсказываемые теорией и находимые в результате измерения. Если нет хотя бы приблизительного их совпадения, теория, даже будучи логически стройной, не может быть признана удовлетворительной. Вместе с тем, эксперимент не позволяет сделать абсолютного вывода о правильности теории. Получив экспериментальное подтверждение теоретического положения, далеко не всегда можно гарантировать, что эксперимент подтвердил только его. Исследователю не всегда известно, скольким еще другим допустимым предположениям удовлетворяет полученный результат. С этим, в частности, связана невозможность “решающего эксперимента”. Эксперимент с абсолютностью подтверждает не само теоретическое построение, а его специфическую интерпретацию.

В ряде случаев наблюдение и во всех случаях эксперимент связаны с измерением определенных характеристик изучаемой системы.

Что же такое измерение?

Процедура установления одной величины с помощью другой, принятой за эталон, называется измерением. Измерение связывает наблюдение с математикой и позволяет создавать количественные теории.

Способ измерения включает в себя три главных момента:

а) выбор единицы измерения и получение соответствующего набора мер;

б) установление правила сравнения измеряемой величины с мерой и правила сложения мер;

в) описание процедуры измерения.

Итак, измерение предполагает проведение той или иной физической процедуры, но не сводится к ней. Измерение для выполнения своей цели должно привлекать также определенную теорию. Необходимо также знать и теорию прибора, так как без такого знания его показания останутся для нас непонятными.

Цель наблюдений и экспериментов - давать науке факты. Что же понимается под фактом?

В литературе встречаются разные определения факта. Будем считать фактом эмпирическое знание, которое или выполняет функцию исходного момента в построении научной теории, или играет роль проверки ее истинности. Кстати, теоретическое знание тоже может выполнять эти две названные функции. И тогда оно будет выступать в роли факта.

Так как факт - это элемент знания, то он часто сливается со своим объяснением. Очень важно всегда максимально очищать факты от их объяснения. Почему? Если мы за реальный факт выдадим факт уже объясненный, то тем самым необоснованно наложим запрет на другие возможные объяснения данного факта. Однако необходимо учитывать, что фактов в чистом виде не существует. На всяком факте лежит печать существующего знания. Как форма знания для естествознания факт ценен тем, что он обладает известной инвариантностью в различных системах знания.

 

4. Гипотеза как форма развития естествознания»

Научное исследование начинается с постановки проблемы. Понятие проблемы связывается с непознанным. Возникает вопрос: вся ли область непознанного составляет научную проблему? Нет. Проблема - это не непознанное как таковое, но уже некоторое знание о нем. Проблема - это знание о незнании, это незнание, которое можно сформулировать в виде вопроса. Проблемы вырастают из предшествующего знания как своеобразное логическое следствие. Существующего знания достаточно, чтобы поставить проблему, но не решить ее. Примерами проблем могут служить проблема управляемой термоядерной реакции, проблема фотосинтеза и т.д.

Итак, для постановки проблемы нужно знание. Им являются научные факты. Решение проблемы ведет к возникновению теории. Необходимым путем к созданию теорий является гипотеза. Гипотезой называется выдвигаемое на основе известных фактов предположение о непосредственно ненаблюдаемых формах связи явлений или внутренних механизмах, обуславливающих эти явления и присущие им формы связи (ненаблюдаемым будем считать явление, которое нельзя воспринять ни с помощью органов чувств, ни с помощью известных нам приборов).

Научная гипотеза должна удовлетворять следующим условиям:

1. Обязательное согласие с тем фактическим материалом, для объяснения которого она выдвигается. Однако в науке часто бывает и так, что появляющаяся гипотеза противоречит некоторым данным. Это еще не значит, что сделанное предположение непременно неверно. Возможно, неверно то, что мы считаем непреложным фактом. Примером такой ситуации может служить открытие Д.И. Менделеевым периодического закона. Ряд химических элементов ему “не подчинялся”. Д.И. Менделеев предположил, что их атомные веса были определены неправильно, и это подтвердилось более точными экспериментами.

2. Принципиальная проверяемость. Общий метод проверки гипотез - это вывод из них следствий, которые доступны опытной проверке. Если из гипотезы нельзя вывести ни одного подобного рода следствия, она не имеет права на существование. Это хорошо знают физики и такого рода гипотез не выдвигают. Однако нельзя путать фактическую непроверяемость и принципиальную непроверяемость. Фактическая существует в тех случаях, когда в силу математических трудностей нельзя получить из гипотезы количественно определенные следствия, допускающие однозначное сопоставление с опытом, или когда выводимые следствия недоступны проверке в силу недостаточных технических возможностей эксперимента. Фактически непроверяемая гипотеза со временем становится проверяемой. Примером фактически непроверяемой гипотезы на современном этапе развития физики может служить гипотеза кварков, хотя уже сегодня некоторые ее следствия могут быть экспериментально проверены.

3. Логическая простота. Действительная простота гипотезы заключается в ее способности, исходя из единого основания, осмыслить по возможности более широкий круг явлений, не прибегая при этом к искусственным построениям, произвольным допущениям. Принцип логической простоты используется в тех случаях, когда для объяснения одних и тех же фактов выдвигается ряд гипотез. Причем они одинаково подтверждаются экспериментом. Для примера можно сравнить гипотезы Птолемея и Коперника. Согласно Птолемею центром солнечной системы является Земля, а согласно Копернику - Солнце. Обе гипотезы хорошо объясняют результаты наблюдений. Но вот чтобы объяснить петли, которые делают планеты на небосводе в течение года, с точки зрения гипотезы Коперника никаких дополнительных допущений делать не надо, а гипотеза Птолемея требует их ввода. В этом смысле гипотеза Коперника логически проще, чем гипотеза Птолемея.

4. Надежность гипотезы - это ее способность не разрушаться при введении в нее новых фактов, при расширении ее предметной области. Гипотеза считается надежной, если она не ведет к противоречиям формально-логического характера, не противоречит законам природы, ведет к предсказанию новых явлений. Рассмотрим затруднение, возникшее при объяснении непрерывности энергетического спектра при бетта-распаде ядер. 3атруднение имело принципиальный характер: речь шла о нарушении закона сохранения энергии. Бор выдвинул гипотезу, согласно которой справедливость закона сохранения энергии в микромире должна проявляться статистически для большого числа элементарных процессов. Эта гипотеза оказалась ненадежной, так как она вела к фундаментальному противоречию логического характера. Действительно, поскольку многочисленные достижения квантовой теории в области атомной и ядерной физики не пришли в противоречие ни с одним из основных законов природы (в частности, для элементарных процессов закон сохранения энергии подтверждается всякий раз с поразительной точностью), не было оснований выделять процесс бетта-распада среди других процессов. Другая гипотеза для объяснения этого явления была предложена Паули. Согласно ей, из ядра вылетает, помимо электрона, еще одна частица - нейтрино. Эта гипотеза не вела к фундаментальным противоречиям и позволила объяснить энергетический спектр бетта-распада. На основании этой гипотезы были открыты частицы нейтрино и антинейтрино.

Очень важно запомнить принципиальную трудность, связанную с превращением гипотезы в теорию. Дело в том, что подтвержденное опытом следствие может быть получено из многих гипотез. Поэтому оно может оказаться истинным, а гипотеза - ложной, Например, из гипотезы теплорода было выведено уравнение теплопроводности. Оно правильно, им пользуются и сейчас (хотя, конечно, получают другим способом), а гипотеза теплорода неверна. Это обстоятельство порождает особую проблему доказательства гипотезы.

Чем большая система разнообразных следствий оправдывается практически, тем менее вероятным становится, что все они могли бы быть так же хорошо выведены из других гипотез. Поэтому получение все более богатой и разнообразной совокупности следствий, вытекающих из гипотезы, их опытная проверка и есть путь перехода от гипотезы к теории.


Поделиться:

Дата добавления: 2015-08-05; просмотров: 155; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты