Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Постановка задачи. Тема 6.2. Методы решения нелинейных уравнений

Читайте также:
  1. Goal - постановка цели
  2. I. Региональная политика: понятие, цели и задачи.
  3. I. ЦЕЛИ И ЗАДАЧИ ДИПЛОМНОЙ РАБОТЫ
  4. I. ЦЕЛЬ И ЗАДАЧИ ВЫПОЛНЕНИЯ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ (ДИПЛОМНОЙ) РАБОТЫ
  5. II. ОСНОВНЫЕ ЗАДАЧИ КУРСА ФИЗИКИ В ПОДГОТОВКЕ ИНЖЕНЕРА
  6. II. Основные цели и задачи
  7. III. ЗАДАЧИ ЗАНЯТИЯ.
  8. III. ОСНОВНЫЕ ЦЕЛИ И ЗАДАЧИ БЮДЖЕТНОЙ ПОЛИТИКИ
  9. III.Задачи
  10. Quot;Талант - это способность человека оригинально решать банальные задачи; способность, которая проявляется, когда человек находится в диапазоне нормы".

Тема 6.2. Методы решения нелинейных уравнений

 

Постановка задачи

Отделение корней

6.2.2.1. Графическое отделение корней

6.2.2.2. Аналитическое отделение корней

Уточнение корней

6.2.3.1. Метод половинного деления

6.2.3.2. Метод итерации

6.2.3.3. Метод Ньютона (метод касательных)

6.2.3.4. Метод хорд

6.2.3.5. Сравнение методов решения нелинейных уравнений

Технология решения нелинейных уравнений средствами математических

Пакетов

6.2.4.1. Технология решения нелинейных уравнений средствами MathCad

6.2.4.1. Технология решения нелинейных уравнений средствами MatLab

6.2.5. Тестовые задания по теме «Методы решения нелинейных уравнений»

 

 

Постановка задачи

 

Одной из важнейших и наиболее распространенных задач математического анализа является задача определения корней уравнения с одним неизвестным, которое в общем виде можно представить как f(x) = 0. В зависимости от вида функции f(x)различают алгебраические и трансцендентные уравнения. Алгебраическими уравненияминазываются уравнения, в которых значение функции f(x)представляет собой полином n-й степени:

f(x) = Р(х) = an xn + a2 x2 + …+ a1 x + a0 = 0.(6.2.1-1)

 

Всякое неалгебраическое уравнение называется трансцендентным уравнением. Функция f(x) в таких уравнениях представляет собой хотя бы одну из следующих функций: показательную, логарифмическую, тригонометрическую или обратную тригонометрическую.

Решением уравнения f(x)=0называется совокупность корней, то есть такие значения независимой переменной , при которых уравнение обращается в тождество . Однако, точные значения корней могут быть найдены аналитически только для некоторых типов уравнений. В частности, формулы, выражающие решение алгебраического уравнения, могут быть получены лишь для уравнений не выше четвертой степени. Еще меньше возможностей при получении точного решения трансцендентных уравнений. Следует отметить, что задача нахождения точных значений корней не всегда корректна. Так, если коэффициенты уравнения являются приближенными числами, точность вычисленных значений корней заведомо не может превышать точности исходных данных. Эти обстоятельства заставляют рассматривать возможность отыскания корней уравнения с ограниченной точностью (приближенных корней).



Задача нахождения корня уравнения с заданной точностью ( >0)считается решенной, если вычислено приближенное значение , которое отличается от точного значения корня не более чем на значение e

(6.2.1-2)

Процесс нахождения приближенного корня уравнения состоит из двух этапов:


Дата добавления: 2015-08-05; просмотров: 4; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Задания для самостоятельного выполнения | Аналитическое отделение корней
lektsii.com - Лекции.Ком - 2014-2020 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты