КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Метод хорд
Геометрическая интерпретация метода хорд состоит в следующем Рис.6.2.3-8
Проведем отрезок прямой через точки A и B. Очередное приближение x1 является абсциссой точки пересечения хорды с осью 0х. Построим уравнение отрезка прямой:
Положим y = 0 и найдем значение х = х1 (очередное приближение):
Повторим процесс вычислений для получения очередного приближения к корню - х2:
В нашем случае (рис.6.2.11) и расчетная формула метода хорд будет иметь вид (6.2.3-13)
Эта формула справедлива, когда за неподвижную точку принимается точка b, а в качестве начального приближения выступает точка a. Рассмотрим другой случай (рис. 6.2.3-9), когда .
Рис.6.2.3-9
Уравнение прямой для этого случая имеет вид
Очередное приближение х1 при y = 0
Тогда рекуррентная формула метода хорд для этого случая имеет вид
(6.2.3-14)
Следует отметить, что за неподвижную точку в методе хорд выбирают тот конец отрезка [a;b], для которого выполняется условие f (x)∙ f¢¢ (x)>0. Таким образом, если за неподвижную точку приняли точку а,то в качестве начального приближения выступает х0 = b, и наоборот. Достаточные условия, которые обеспечивают вычисление корня уравнения f(x)=0 по формуле хорд, будут теми же, что и для метода касательных (метод Ньютона), только вместо начального приближения выбирается неподвижная точка. Метод хорд является модификацией метода Ньютона. Разница состоит в том, что в качестве очередного приближения в методе Ньютона выступает точка пересечения касательной с осью 0Х, а в методе хорд – точка пересечения хорды с осью 0Х – приближения сходятся к корню с разных сторон. Оценка погрешности метода хорд определяется выражением
(6.2.3-15) Условие окончания процесса итераций по методу хорд
(6.2.3-16)
В случае, если M1<2m1, то для оценки погрешности метода может быть использована формула | xn - xn-1| £ e.
Пример 6.2.3-4. Уточнить корень уравнения ex – 3x = 0, отделенный на отрезке [0;1] с точностью 10-4. Проверим условие сходимости:
Следовательно, за неподвижную точку следует выбрать а=0, а в качестве начального приближения принять х0=1, поскольку f(0)=1>0 и f(0)*f"(0)>0. Результаты расчета, полученные с использованием формулы
Таблица 6.2.3-4
Требуемая точность достигается на 8-й итерации. Следовательно, за приближенное значение корня можно принять х = 0.6191. Схема алгоритма метода хорд приведена на рис. 6.2.3-10. Выбор неподвижной точки, определяющей вид расчетной формулы, производится путем сравнения одного из концов отрезка [a;b] с начальным приближением (x0=a). В качестве неподвижного конца отрезка (точка с) выбирается тот, который не совпадает с начальным приближением. Рис. 6.2.3-10. Схема алгоритма метода хорд
|