Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Метод итерации




 

Метод итераций предполагает замену уравнения f(x)=0 равносильным уравнением x=j(x). Если корень уравнения отделен на отрезке [a;b], то исходя из начального приближения x0Î[a;b], можно получить последовательность приближений к корню

 

x1 = j(x0), x2 = j(x1), …, , (6.2.3-3)

 

где функция j(x) называется итерирующей функцией.

Условие сходимости метода простой итерации определяется следующей теоремой.

 

Пусть корень х* уравнения x=j(x) отделен на отрезке [a;b]и построена последовательность приближений по правилу xn=j(xn-1). Тогда, если все члены последовательности xn=j(xn-1) Î [a;b] и существует такое q (0<q<1), что для всех х Î [a; b]выполняется |j’(x)| = q<1, то эта последовательность является сходящейся и пределом последовательности является значение корня x*, т.е. процесс итерации сходится к корню уравнения независимо от начального приближения.

Таким образом, если выполняется условие сходимости метода итераций, то последовательность x0, x1, x2, …, xn,…, полученная с помощью формулы xn+1 = j(xn), сходится к точному значению корня :

 

если

 

Условие j(x)Î[a;b] при xÎ[a;b] означает, что все приближения x1, x2, …, xn,…, полученные по итерационной формуле, должны принадлежать отрезку [a;b], на котором отделен корень.

Для оценки погрешности метода итерации справедливо условие

 

(6.2.3-4)

 

За число q можно принимать наибольшее значение |j'(x)|,а процесс итераций следует продолжать до тех пор, пока не выполнится неравенство

 

(6.2.3-5)

 

На практике часто используется упрощенная формула оценки погрешности. Например, если 0<q£½ то

 

|xn-1 - xn| £ .

 

Использование итерационной формулы xn+1= j(xn) позволяет получить значение корня уравнения f(x)=0 с любой степенью точности.

 

Геометрическая иллюстрация метода итераций. Построим на плоскости X0Y графики функций y=x и y=j(x). Корень уравнения х=j(x) является абсциссой точки пересечения графиков функции y = j(x) и прямой y=x. Возьмем некоторое начальное приближение x0 Î [a;b]. На кривой y = j(x) ему соответствует точка А0 = j(x0). Чтобы найти очередное приближение, проведем через точку А0 прямую горизонтальную линию до пересечения с прямой y = x (точкаВ1) и опустим перпендикуляр до пересечения с кривой (точкаА1), то есть х1=j(x0). Продолжив построение аналогичным образом, имеем ломаную линию А0, В1, А1, В2, А2…, для которой общие абсциссы точек представляют собой последовательное приближение х1, х2, …, хn («лестницу») к корню х*. Из рис. 6.2.3-3а видно, что процесс сходится к корню уравнения.

Рассмотрим теперь другой вид кривой y = j(x) (рис. 6.2.6b). В данном случае ломаная линия А0, В1, А1, В2, А2…имеет вид “спирали”. Однако, и в этом случае наблюдается сходимость.

a) b)

Рис. 6.2.3-3

Нетрудно видеть, что в первом случае для производной выполняется условие 0< j’(x)< 1, а во втором случае производная j’(x)<0иj’(x)>-1. Таким образом, очевидно, что если |j’(x)|<1, то процесс итераций сходится к корню.

Теперь рассмотрим случаи, когда |j’(x) |> 1. На рис. 6.2.3-4а показан случай, когда j’(x)>1, а на рис. 6.2.3-4b – когда j’(x) < -1. В обоих случаях процесс итерации расходится, то есть, полученное на очередной итерации значение х все дальше удаляется от истинного значения корня.

a) b)

Рис. 6.2.3-4

 

Способы улучшения сходимости процесса итераций. Рассмотрим два варианта представления функции j(x) при переходе от уравнения f(x)кx=j(x).

1.Пусть функция j(x) дифференцируема и монотонна в окрестностях корня и существует числоk £ |j‘(x)|, где k ³ 1 (т.е. процесс расходится). Заменим уравнение х=j(x) эквивалентным ему уравнением х=Y(х), где Y(х) = 1/j(x)(перейдем к обратной функции). Тогда

 

а значит q=1/k < 1 и процесс будет сходиться.

 

2.Представим функцию j(x) как j(x) = х - lf(x), где l - коэффициент, не равный

нулю. Для того чтобы процесс сходился, необходимо, чтобы
0<|j¢(x)| = |1 - lf¢(x)| < 1. Возьмем l= 2/(m1+M1), где m1 и M1 – минимальное и максимальное значения f’(x) (m1=min|f’(x)|, M1=max|f’(x)|) для хÎ[a;b], т.е. 0£ m1 £ f¢(x) £ M1£1. Тогда

 

 

и процесс будет сходящимся, рекуррентная формула имеет вид

 

Если f¢(x) < 0, то в рекуррентной формуле f(x) следует умножить на -1.

 

Параметр λ может быть также определен по правилу:

Если , то , а если , то , где .

 

Схема алгоритма метода итерации приведена на рис. 6.2.3-5.

Исходное уравнение f(x)=0преобразовано к виду, удобному для итераций: Левая часть исходного уравнения f(x) и итерирующая функция fi(x) в алгоритме оформлены в виде отдельных программных модулей.

 

Рис. 6.2.3-5. Схема алгоритма метода итерации

 

Пример 6.2.3-2. Уточнить корень уравнения 5x – 8∙ln(x) – 8 =0 с точностью 0.1, который локализован на отрезке [3;4].

Приведем уравнение к виду, удобному для итераций:

Следовательно, за приближенное значение корня уравнения принимаем значение x3=3.6892, обеспечивающее требуемую точность вычислений. В этой точке f(x3)=0.0027.


Поделиться:

Дата добавления: 2015-08-05; просмотров: 75; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты