КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Метод Ньютона (метод касательных)
Пусть корень уравнения f(x)=0 отделен на отрезке [a;b], причем первая и вторая производные f’(x) и f''(x) непрерывны и знакопостоянны при хÎ [a;b]. Пусть на некотором шаге уточнения корня получено (выбрано) очередное приближение к корню хn. Тогда предположим, что следующее приближение, полученное с помощью поправки hn, приводит к точному значению корня
x = хn + hn. (6.2.3-6) Считая hn малой величиной, представим f(хn+ hn) в виде ряда Тейлора, ограничиваясь линейными слагаемыми
f(хn + hn) » f(хn) + hnf’(хn). (6.2.3-7)
Учитывая, что f(x) = f(хn + hn) = 0, получим f(хn) + hnf ’(хn) » 0. Отсюда hn » - f(хn)/ f’(хn). Подставим значение hnв (6.2.3-6) и вместо точного значения корня xполучим очередное приближение
(6.2.3-8)
Формула (6.2.3-8) позволяет получить последовательность приближений х1,х2, х3…, которая при определенных условиях сходится к точному значению корняx, то есть Геометрическая интерпретация метода Ньютона состоит в следующем
Рис. 6.2.3-6
Расчетная формула метода Ньютона (6.2.3-8) может быть получена из геометрического построения. Так в прямоугольном треугольнике х0В0х1катет (6.2.3-9) (6.2.3-10)
Эта формула совпадает с (6.2.3-8) для n-го приближения.
Из рис.6.2.3-6 видно, что выбор в качестве начального приближения точки а может привести к тому, что следующее приближение х1окажется вне отрезка [a;b], на котором отделен корень x. В этом случае сходимость процесса не гарантирована. В общем случае выбор начального приближения производится в соответствии со следующим правилом: за начальное приближение следует принять такую точку х0Î[a;b], в которой f(х0)×f’’(х0)>0, то есть знаки функции и ее второй производной совпадают. Условия сходимости метода Ньютона сформулированы в следующей теореме.
Если корень уравнения отделен на отрезке [a;b], причем f’(х0)и f’’(х) отличны от нуля и сохраняют свои знаки при хÎ[a;b], то, если выбрать в качестве начального приближения такую точку х0Î[a;b], что f(х0).f¢¢(х0)>0, то корень уравнения f(x)=0 может быть вычислен с любой степенью точности.
Оценка погрешности метода Ньютона определяется следующим выражением:
(6.2.3-11)
где -- наименьшее значение при -- наибольшее значение при Процесс вычислений прекращается, если , где -- заданная точность.
Кроме того, условием достижения заданной точности при уточнении корня методом Ньютона могут служить следующие выражения:
(6.2.3-12)
Схема алгоритма метода Ньютона приведена на рис. 6.2.3-7.
Левая часть исходного уравнения f(x) и ее производная f’(x) в алгоритме оформлены в виде отдельных программных модулей. Рис. 6.2.3-7. Схема алгоритма метода Ньютона Пример 6.2.3-3. Уточнить методом Ньютона корни уравнения x-ln(x+2) = 0 при условии, что корни этого уравнения отделены на отрезках x1Î[-1.9;-1.1] и x2Î [-0.9;2]. Первая производная f’(x) = 1 – 1/(x+2) сохраняет свой знак на каждом из отрезков:
f’(x)<0 при хÎ [-1.9; -1.1], f’(x)>0 при хÎ [-0.9; 2].
Вторая производная f'(x) = 1/(x+2)2 > 0 при любых х. Таким образом, условия сходимости выполняются. Поскольку f''(x)>0 на всей области допустимых значений, то для уточнения корня за начальное приближение x1 выберем х0= -1,9 (так как f(-1,9)×f”(-1.9)>0). Получим последовательность приближений:
Продолжая вычисления, получим следующую последовательность первых четырех приближений: -1.9; –1.8552, -1.8421; -1.8414.Значение функции f(x) в точке x = -1.8414 равно f(-1.8414) = -0.00003. Для уточнения корня x2Î[-0.9;2] выберем в качестве начального приближения х0 = 2 (f(2)×f”(2)>0). Исходя из х0 = 2, получим последовательность приближений: 2.0; 1.1817; 1.1462; 1.1461. Значение функции f(x) в точке x = 1.1461 равно f(1.1461) = -0.00006. Метод Ньютона обладает высокой скоростью сходимости, однако на каждом шаге он требует вычисления не только значения функции, но и ее производной.
|