КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ТЕМА 1. Физические свойства жидкостей и газов
Физические свойства жидкостей и газов (тяготение, инерционность, температурное расширение, сжимаемость, упругость, вязкость, текучесть, сопротивление разрыву, парообразование), их количественные характеристики. Силы, действующие в жидкостях. Давление в жидкости. Модель сплошной среды. Модель идеальной жидкости. Закон Ньютона для вязкого трения. Ньютоновские и неньютоновские жидкости. [1, с. 5 - 20], [2, с. 8 - 13], [7, с. 11 - 17] По своим физическим свойствам жидкости занимают промежуточное положение между твердыми телами и газами. Жидкость весьма мало изменяет свой объем при изменении давления или температуры, в этом отношении она сходна с твердым телом. Жидкость обладает текучестью, благодаря чему она не имеет собственной формы и принимает форму того сосуда, в котором находится. В этом отношении жидкость отличается от твердого тела и имеет сходство с газом. Свойства жидкостей и их отличие от твердых тел и газов обусловливаются молекулярным строением. Следует уяснить, каким образом особенности молекулярного строения влияют на физические свойства жидкости. Покоящаяся жидкость подвержена действию двух категорий внешних сил: массовых и поверхностных. Массовые силы пропорциональны массе жидкостей или для однородных жидкостей – ее объему. Внешние поверхностные силы непрерывно распределены по граничной поверхности жидкости. Следует знать, какие силы относятся к массовым (объемным) и к поверхностным силам, какие силы называются внешними и какие внутренними. В покоящейся жидкости может существовать только напряжение сжатие, т.е. давление. Необходимо четко представлять разницу между понятиями среднего гидростатического давления, гидростатического давления в точке, выраженных в единицах напряжения, и понятием силы гидростатического давления, выраженной в единицах силы. В гидравлике при изучении законов равновесия и движения широко пользуются различными физическими характеристиками жидкости (например, плотностью). Студенту нужно знать основные физические характеристики жидкости, единицы измерения этих характеристик. Следует также рассмотреть основные физические свойства капельных жидкостей: сжимаемость, тепловое расширение, вязкость и др. Вязкостью называется способность жидкости оказывать сопротивление относительному перемещению слоев, которое вызывает деформацию сдвига. Это свойство проявляется в том, что в жидкости при ее движении возникает сила сопротивления сдвигу, называемая силой внутреннего трения. При прямолинейном слоистом движении жидкости сила внутреннего трения Т между перемещающимися один относительно другого слоями с площадью соприкосновения S определяется законом Ньютона для вязкого трения: Т = ± µ S или = τ = ± µ , (1) Динамический коэффициент вязкости µ не зависит от давления и от характера движения, а определяется лишь физическими свойствами жидкости и ее температурой. Как видно из (1), сила Т и касательное напряжение τ пропорциональны градиенту скорости u по нормали n к поверхности трения - du/dn, который представляет собой изменение скорости жидкости в направлении нормали на единицу длины нормали. Жидкости, для которых зависимость изменения касательных напряжений от скорости деформации отличается от закона Ньютона (1), называются неньютоновскими жидкостями. Учет сил вязкости значительно осложняет изучение законов движения жидкости. С другой стороны, капельные жидкости незначительно изменяют свой объем при изменении давления и температуры. В целях упрощения постановки задач и их математического решения создана модель идеальной жидкости. Идеальной жидкостью называется воображаемая жидкость, которая характеризуется полным отсутствием вязкости и абсолютной неизменяемостью объема при изменении давления и температуры. Переход от идеальной жидкости к реальной осуществляется введением в конечные расчетные формулы поправок, учитывающих влияние сил вязкости (и полученных главным образом опытным путем). При изучении гидродинамики следует проследить особенности перехода от идеальной жидкости к реальной. В гидравлике жидкость рассматривается как сплошная среда (континуум), т.е. среда, масса которой распределена по объему непрерывно. Это позволяет рассматривать все характеристики жидкости (плотность, вязкость, давление, скорость и др.) как функции координат точки и времени, причем в большинстве случаев эти функции предполагаются непрерывными.
Вопросы для самопроверки
1. В чем отличие жидкостей от твердых тел и газов? 2. Какова взаимосвязь между плотностью и удельным весом жидкости? Укажите единицы. 3. Что называется коэффициентом объемного сжатия жидкости? Какова его связь с модулем упругости? 4. Что называется вязкостью жидкости? В чем суть закона вязкого трения Ньютона? 5. В чем принципиальная разница между силами внутреннего трения в жидкости и силами трения при относительном перемещении твердых тел? 6. Какова связь между динамическим и кинематическим коэффициентами вязкости? Укажите их единицы. 7. Укажите свойства идеальной жидкости. С какой целью в гидравлике введено понятие об идеальной жидкости? В каких случаях при практических расчетах жидкость можно считать идеальной?
|