Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Факторный анализ




Факторный анализ как метод редукции данных

Главными целями факторного анализа являются: (1) сокращение числа переменных (редукция данных) и (2) определение структуры взаимосвязей между переменными, т.е. классификация переменных. Поэтому факторный анализ используется или как метод сокращения данных или как метод классификации. Предположим, что вы проводите исследование, в котором измеряете рост ста людей в дюймах и сантиметрах. Таким образом, у вас имеются две переменные. Если далее вы захотите исследовать, например, влияние различных пищевых добавок на рост, будете ли вы продолжать использовать обе переменные? Вероятно, нет, т.к. рост является одной характеристикой человека, независимо от того, в каких единицах он измеряется. Теперь предположим, вы хотите измерить удовлетворенность людей жизнью, для чего составляете вопросник с различными пунктами; среди других вопросов задаете следующие: удовлетворены ли люди своим хобби и как интенсивно они им занимаются. Результаты преобразуются так, что средние ответы соответствуют значению 100, в то время как ниже и выше средних ответов расположены меньшие и большие значения, соответственно. Две переменные коррелированы между собой. Из высокой коррелированности двух этих переменных можно сделать вывод об избыточности двух пунктов опросника. Зависимость между переменными можно обнаружить с помощью диаграммы рассеяния. Полученная путем подгонки линия регрессии дает графическое представление зависимости. Если определить новую переменную на основе линии регрессии, изображенной на этой диаграмме, то такая переменная будет включить в себя наиболее существенные черты обеих переменных. Итак, фактически, вы сократили число переменных и заменили две одной. Отметим, что новый фактор (переменная) в действительности является линейной комбинацией двух исходных переменных. Пример, в котором две коррелированные переменные объединены в один фактор, показывает главную идею факторного анализа или, более точно, анализа главных компонент . Если пример с двумя переменными распространить на большее число переменных, то вычисления становятся сложнее, однако основной принцип представления двух или более зависимых переменных одним фактором остается в силе.

Факторный анализ как метод классификации

Термин факторный анализ теперь будет включать как анализ главных компонент, так и анализ главных факторов. Предполагается, что вы находитесь в той точке анализа, когда в целом знаете, сколько факторов следует выделить. Вы можете захотеть узнать значимость факторов, то есть, можно ли интерпретировать их разумным образом и как это сделать. Чтобы проиллюстрировать, каким образом это может быть сделано, производятся действия "в обратном порядке", то есть, начинают с некоторой осмысленной структуры, а затем смотрят, как она отражается на результатах. Вернемся к примеру об удовлетворенности; ниже приведена корреляционная матрица для переменных, относящихся к удовлетворенности на работе и дома.

STATISTICA ФАКТОРНЫЙ АНАЛИЗ Корреляции (factor.sta) Построчное удаление ПД n=100
Переменная РАБОТА_1 РАБОТА_2 РАБОТА_3 ДОМ_1 ДОМ_2 ДОМ_3
РАБОТА_1 РАБОТА_2 РАБОТА_3 ДОМ_1 ДОМ_2 ДОМ_3 1.00 .65 .65 .14 .15 .14 .65 1.00 .73 .14 .18 .24 .65 .73 1.00 .16 .24 .25 .14 .14 .16 1.00 .66 .59 .15 .18 .24 .66 1.00 .73 .14 .24 .25 .59 .73 1.00

Переменные, относящиеся к удовлетворенности на работе, более коррелированы между собой, а переменные, относящиеся к удовлетворенности домом, также более коррелированы между собой. Корреляции между этими двумя типами переменных (переменные, связанные с удовлетворенностью на работе, и переменные, связанные с удовлетворенностью домом) сравнительно малы. Поэтому кажется правдоподобным, что имеются два относительно независимых фактора (два типа факторов), отраженных в корреляционной матрице: один относится к удовлетворенности на работе, а другой к удовлетворенности домашней жизнью.


Поделиться:

Дата добавления: 2015-04-18; просмотров: 148; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты