Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Архитектура с сокращённым набором команд (RISC).




В компьютерной индустрии наблюдается настоящий бум систем с RISC-архитектурой. Рабочие станции и серверы, созданные на базе концепции RISC, завоевали лидирующие позиции благодаря своим исключительным характеристикам и уникальным свойствам операционных систем типа UNIX, используемых на этих платформах.

В самом начале 80-х годов почти одновременно завершились теоретические исследования в области RISC-архитектуры, проводившиеся в Калифорнийском, Стэнфордском университетах, а также в лабораториях фирмы IBM. Особую значимость имеет проект RISC-1, который возглавили профессора Давид Паттерсон и Карло Секуин. Именно они ввели в употребление термин RISC и сформулировали четыре основных принципа RISC-архитектуры:

каждая команда независимо от ее типа выполняется за один машинный цикл, длительность которого должна быть максимально короткой;

все команды должны иметь одинаковую длину и использовать минимум адресных форматов, что резко упрощает логику центрального управления процессором;

обращение к памяти происходит только при выполнении операций записи и чтения, вся обработка данных осуществляется исключительно в регистровой структуре процессора;

система команд должна обеспечивать поддержку языка высокого уровня. (Имеется в виду подбор системы команд, наиболее эффективной для различных языков программирования.)

Со временем трактовка некоторых из этих принципов претерпела изменения. В частности, возросшие возможности технологии позволили существенно смягчить ограничение состава команд: вместо полусотни инструкций, использовавшихся в архитектурах первого поколения, современные RISC-процессоры реализуют около 150 инструкций. Однако основной закон RISC был и остается незыблемым: обработка данных должна вестись только в рамках регистровой структуры и только в формате команд "регистр – регистр –регистр".

В RISC-микропроцессорах значительную часть площади кристалла занимает тракт обработки данных, а секции управления и дешифратору отводится очень небольшая его часть.

Аппаратная поддержка выбранных операций, безусловно, сокращает время их выполнения, однако критерием такой реализации является повышение общей производительности компьютера в целом и его стоимость. Поэтому при разработке архитектуры необходимо проанализировать результаты компромиссов между различными подходами, различными наборами операций и на их основе выбрать оптимальное решение.

Развитие RISC-архитектуры в значительной степени определяется успехами в области проектирования оптимизирующих компиляторов. Только современная технология компиляции позволяет эффективно использовать преимущества большого регистрового файла, конвейерной организации и высокой скорости выполнения команд. Есть и другие свойства процесса оптимизации в технологии компиляции, обычно используемые в RISC-процессорах: реализация задержанных переходов и суперскалярная обработка, позволяющие в один и тот же момент времени посылать на выполнение несколько команд.

Основные черты архитектуры:

RISC-архитектура
Однобайтовые команды
Большое количество регистров
Простые команды
Несколько команд за один цикл процессора
Несколько исполнительных устройств

Одним из важных преимуществ RISC-архитектуры является высокая скорость арифметических вычислений. RISC-процессоры первыми достигли планки наиболее распространенного стандарта IEEE 754, устанавливающего 32-разрядный формат для представления чисел с фиксированной точкой и 64-разрядный формат "полной точности" для чисел с плавающей точкой. Высокая скорость выполнения арифметических операций в сочетании с высокой точностью вычислений обеспечивает RISC-процессорам безусловное лидерство по быстродействию в сравнении с CISC-процессорами.

Другой особенностью RISC-процессоров является комплекс средств, обеспечивающих безостановочную работу арифметических устройств: механизм динамического прогнозирования ветвлений, большое количество оперативных регистров, многоуровневая встроенная кэш-память.

Организация регистровой структуры – основное достоинство и основная проблема RISC. Практически любая реализация RISC-архитектуры использует трехместные операции обработки, в которых результат и два операнда имеют самостоятельную адресацию – R1 : = R2, R3. Это позволяет без существенных затрат времени выбрать операнды из адресуемых оперативных регистров и записать в регистр результат операции. Кроме того, трехместные операции дают компилятору большую гибкость по сравнению с типовыми двухместными операциями формата "регистр – память" архитектуры CISC. В сочетании с быстродействующей арифметикой RISC-операции типа "регистр – регистр" становятся очень мощным средством повышения производительности процессора.

Вместе с тем опора на регистры является ахиллесовой пятой RISC-архитектуры. Проблема в том, что в процессе выполнения задачи RISC-система неоднократно вынуждена обновлять содержимое регистров процессора, причем за минимальное время, чтобы не вызывать длительных простоев арифметического устройства. Для CISC-систем подобной проблемы не существует, поскольку модификация регистров может происходить на фоне обработки команд формата "память – память".

Существуют два подхода к решению проблемы модификации регистров в RISC-архитектуре: аппаратный, предложенный в проектах RISC-1 и RISC-2, и программный, разработанный специалистами IВМ и Стэндфордского университета. Принципиальная разница между ними заключается в том, что аппаратное решение основано на стремлении уменьшить время вызова процедур за счет установки дополнительного оборудования процессора, тогда как программное решение базируется на возможностях компилятора и является более экономичным с точки зрения аппаратуры процессора.

 

 


Поделиться:

Дата добавления: 2015-04-18; просмотров: 82; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты