Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



МЕХАНИКА ТЕЧЕНИЯ ЖИДКОСТИ




Читайте также:
  1. W (живое сечение) – поверхность в пределах потока жидкости, проведенная перпендикулярно направлению струек.
  2. Аномально-вязкие нефти. Структурированные (неньютоновские) жидкости.
  3. АППАРАТУРА ДЛЯ РАСПРЕДЕЛЕНИЯ И НАПРАВЛЕНИЯ ПОТОКОВ РАБОЧЕЙ ЖИДКОСТИ
  4. Ассоциированные инфекции, особенности их клинического течения, диагностика, лечение.
  5. Бұлшық еттер биомеханикасы.
  6. Б) по истечения срока максимальной инкубации у контактировавших с больным
  7. БЕЗНАПОРНОЕ ДВИЖЕНИЕ ЖИДКОСТИ В ПОРИСТОЙ СРЕДЕ
  8. Биомеханика выдоха.
  9. Вакуумметрическое давление в насосе при всасывании жидкости
  10. Величина гидростатического давления в случае жидкости, находящейся под действием только силы тяжести.

 

Раздел технической гидромеханики, изучающий законы движения жидкости, называется гидродинамикой.

 

Расход жидкости

 

Потоки жидкости в общем случае являются трехмерными или объемными. Более простыми являются двухмерные и одномерные осевые. В технической гидромеханике рассматриваются одномерные потоки.

Объем жидкости V, проходящей через живое сечение трубопровода в единицу времени t, называют расходом

 

Q= V/t.

 

Расход – один из основных параметров технической гидромеханики и гидропривода. Единицей измерения его - м3 /с. Часто в гидроприводе применяют – л/мин.

Средняя скорость движения потока через сечение S

 

v=Q/S.

Основные понятия струйчатого движения


Траекторией жидкой частицы называют кривую линию, кото­рую описывает жидкая частица при движении. При этом жидкой частицей называют такой малый объем жидкости, для которого можно пренебречь изменением его формы.

При решении практических задач предполагают, что поток дви­жущейся жидкости состоит из элементарных струек, не меняющих своей формы, т. е. поток мысленно разбивают на ряд элементарных струек (трубок), как это показано на рис. 3.1. Модель, согласно та­кому предположению, называют струйчатой моделью движения жидкости.

Рассмотрим поток жидкости, находящейся в установившемся Движении (рис. 3.2). В точках 1, 2, 3, ... этого потока, взятых на расстоянии Dl друг от друга, проведем векторы U1, U2, U3 ..., показы­вающие величину и направление скоростей движения частиц жид­кости в данный момент времени. Касательная кривая, проведенная к векторам движения частиц жидкости и характеризующая направление движения ряда после­довательно расположенных частиц в жидкости в данный момент времени, называется линией тока. В отличие от траектории, кото­рая показывает путь движения одной частицы жидкости за опреде­ленный промежуток времени Dt, линия тока соединяет разные частицы и дает некоторую мгновенную характеристику движущейся жидкости за время t.

Если в движущейся жидкости выделить бесконечно малый замкнутый контур и через все его точки провести линии тока, соответствующие данному моменту времени, то получится как бы труб­чатая непроницаемая поверхность, называемая трубкой тока. Мас­са жидкости, движущейся внутри трубки тока, образует элемен­тарную струйку.



Элементарная струйка обладает двумя свойствами:

1 ) скорости и площади поперечных сечений струек в одном жи­вом сечении не меняются вследствие их малости;

2) скорости и площади поперечных сечений струек в различных живых сечениях могут меняться, однако произведение скорости v отдельных частиц струйки на площади их поперечного сечения S остаются постоянными (уравнение неразрывности элементарной струйки).

Таким образом, поток жидкости есть совокупность элементар­ных струек, представляющая собой непрерывную массу частиц, движущихся в каком-либо направлении.


Дата добавления: 2015-04-18; просмотров: 8; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты