Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Алгебраические дополнения и миноры. Правило Крамера.




Читайте также:
  1. Аварийные переключения, как правило, производятся в ограниченном временном интервале и требуют от персонала четкости, самостоятельности и ответственности при их выполнении.
  2. Анализ деловой активности организации (правило экономического роста) (задача)
  3. Байесово решающее правило классификации (в распознавании образов) при дискретных признаках.
  4. Байесово решающее правило классификации (в распознавании образов) при непрерывных признаках.
  5. Виды дисперсий. Правило сложения дисперсий. Расчет на его основе коэффициента детерминации и эмпирического корреляционного отношения. Их практическое использование.
  6. Вопрос 1. Показатели вариации. Правило сложения дисперсий
  7. Вопрос 65. Закон убывающей предельной производительности. Общее правило использования экономических ресурсов.
  8. Вопрос № 4. Фазовые равновесия в двухкомпонентных системах. Диаграммы плавкости. Правило рычага.
  9. Г). Правило оповещения о новом сообщении от определенного адресата.

Миноры.

Выше было использовано понятие дополнительного минора матрицы. Дадим определение минора матрицы.

Определение. Если в матрице А выделить несколько произвольных строк и столько же произвольных столбцов, то определитель, составленный из элементов, расположенных на пересечении этих строк и столбцов называется миноромматрицы А. Если выделено s строк и столбцов, то полученный минор называется минором порядка s.

Заметим, что вышесказанное применимо не только к квадратным матрицам, но и к прямоугольным.

Если вычеркнуть из исходной квадратной матрицы А выделенные строки и столбцы, то определитель полученной матрицы будет являться дополнительным минором.

 

Алгебраические дополнения.

Определение. Алгебраическим дополнением минора матрицы называется его дополнительный минор, умноженный на (-1) в степени, равной сумме номеров строк и номеров столбцов минора матрицы.

В частном случае, алгебраическим дополнением элемента матрицы называется его дополнительный минор, взятый со своим знаком, если сумма номеров столбца и строки, на которых стоит элемент, есть число четное и с противоположным знаком, если нечетное.

Теорема Лапласа. Если выбрано s строк матрицы с номерами i1, … ,is, то определитель этой матрицы равен сумме произведений всех миноров, расположенных в выбранных строках на их алгебраические дополнения.

Метод Крамера.

(Габриель Крамер (1704-1752) швейцарский математик)

Данный метод также применим только в случае систем линейных уравнений, где число переменных совпадает с числом уравнений. Кроме того, необходимо ввести ограничения на коэффициенты системы. Необходимо, чтобы все уравнения были линейно независимы, т.е. ни одно уравнение не являлось бы линейной комбинацией остальных.

Для этого необходимо, чтобы определитель матрицы системы не равнялся 0.

det A ¹ 0;

Действительно, если какое- либо уравнение системы есть линейная комбинация остальных, то если к элементам какой- либо строки прибавить элементы другой, умноженные на какое- либо число, с помощью линейных преобразований можно получить нулевую строку. Определитель в этом случае будет равен нулю.

 

Теорема. (Правило Крамера):

Теорема. Система из n уравнений с n неизвестными



в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам:

xi = Di/D, где

D = det A, а Di – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi.

Di =

Пример.

A = ; D1= ; D2= ; D3= ;

x1 = D1/detA; x2 = D2/detA; x3 = D3/detA;

 

Пример. Найти решение системы уравнений:

D = = 5(4 – 9) + (2 – 12) – (3 – 8) = -25 – 10 + 5 = -30;

D1 = = (28 – 48) – (42 – 32) = -20 – 10 = -30.

x1 = D1/D = 1;

D2 = = 5(28 – 48) – (16 – 56) = -100 + 40 = -60.

x2 = D2/D = 2;

D3 = = 5( 32 – 42) + (16 – 56) = -50 – 40 = -90.

x3 = D3/D = 3.

Как видно, результат совпадает с результатом, полученным выше матричным методом.

Если система однородна, т.е. bi = 0, то при D¹0 система имеет единственное нулевое решение x1 = x2 = … = xn = 0.

При D = 0 система имеет бесконечное множество решений.

Для самостоятельного решения:

; Ответ: x = 0; y = 0; z = -2.


Дата добавления: 2015-04-21; просмотров: 18; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты