КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Проекция вектора на ось, свойства проекций. Направляющие косинусы.Рассмотрим в пространстве прямоугольную систему координат OXYZ. Выделим на координатных осях ОХ, ОY и OZ единичный вектор (орт) И обозначим их i, j, k.
M3 M
a
k j M2 i 0
M1 N Выберем произвольный вектор а и совместим его начало с начало координат а = │ОМ│. Найдем проекции вектора а на координатные оси. Проведем через конец вектора ОМ плоскости параллельно координатным плоскостям. Точки пересечения этих плоскостей с осями координат обозначим соответственно М1, М2, М3., получим прямоугольный параллепипед , одной из диагоналей которого является вектор ОМ. Тогда: прха = │ОМ1│, прy│ОМ 2│, прz│ОМ3│. По определению суммы нескольких векторов находим: a = OM1 + М1N + NM. Т.к. М1N = OM2; NM = OM3, то а = OM1 + OM2 + OM3 (1) Но OM1 = │OM1│i; OM2 = │OM2│j; OM3 = │OM3│k (2) Обозначи м проекцию а = ОМ, на оси ОХ, ОY и ОZ, соответственно ах, аy и аz, то есть OM1 = ах ; OM2 = аy ; OM3 = аz. Из равенства (1) и (2) получаем: а = ахi + аyj + аzk (3) Эта формула является основной в векторном исчислении и называется разложением вектора по ортам координатных осей. Числа ах, аy и аz называются координатами вектора а, то есть координаты вектора - есть его проекции на соответствующие координатные оси. Векторное равенство (3) часто записывают в символическом виде: а (ах; аy; аz). Равенство b (bх; by; bz) означает что b = bхi + byj + bzk. Зная проекции вектора а, можно легко найти выражение для модуля вектора. На основании о длине диагонали прямоугольного парралелепипеда: │ОМ│2 = │OM1│2 + │OM2│2 + │OM3│2. Отсюда имеем: (4) Пусть углы вектора а с осями ОХ, OY и OZ ,соответственно, равны α, β и γ. По свойству проекций вектора на ось имеем: Следовательно: (5) Числа cosα, cosβ и cosγ называются направляющими косинусами вектора а. Подставим выражение (5) в равенство (4): сosα2 + cosβ2 + cosγ2 = 1 То есть сумма квадратов направляющих косинусов нулевого вектора равна 1. Легко заметить, что координатами единичного вектора е (cosα; cosβ; cosγ) Итак, задав координаты вектора, всегда можно определить его модуль и направление (то есть сам вектор). Действия над векторами, заданными проекциями. Пусть векторы а = (ах; аy; аz) и b = (bх; by; bz) заданы своими проекциями на оси координат OX, OY и OZ или что тоже самое: а = ахi + аyj + аzk b = bхi + byj + bzk 1. Проеция вектора на ось l равна произведению модуля вектора на косинус угла между вектором и осью: Доказательство. Ясно, что проекция вектора не изменится при его параллельном переносе, поэтому достаточно рассмотреть случай, когда начало вектора совпадает с началом отсчёта O оси l. Так как координата проекции начала равна нулю, то обозначим . 1. Если угол φ острый, то из прямоугольного получаем . Откуда или 2. Если угол φ тупой, то x< 0, . Тогда из или . Т.е. . 2. Проекция суммы двух векторов на ось равна сумме проекций векторов на ту же ось: . Доказательство. Пусть . Обозначим через x1, x2 и x3 координаты проекций A1, B1, C1 на ось l точек A, B и C. Тогда . Но . Это свойство можно обобщить на случай любого числа слагаемых. 3. Если вектор умножается на число λ, то его проекция на ось также умножается на это число: . Доказательство. Пусть угол между вектором и осью . Если λ > 0, то вектор имеет то же направление, что и , и составляет с осью такой же угол . При λ > 0 . Если же λ < 0, то и имеют противоположные направления и вектор составляет с осью угол π – φ и . Следствие. Проекция разности двух векторов на ось равна разности проекций этих векторов на ту же ось.
|