КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Координаты сомножителей, геометрический смысл его модуля.Определение. Векторным произведениемвекторов и называется вектор , удовлетворяющий следующим условиям: 1) , где j - угол между векторами и , 2) вектор ортогонален векторам и 3) , и образуют правую тройку векторов. Обозначается: или .
j
Свойства векторного произведения векторов: 1) ; 2) , если ïï или = 0 или = 0; 3) (m )´ = ´(m ) = m( ´ ); 4) ´( + ) = ´ + ´ ; 5) Если заданы векторы (xa, ya, za) и (xb, yb, zb) в декартовой прямоугольной системе координат с единичными векторами , то ´ = 6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах и . Пример. Найти векторное произведение векторов и . = (2, 5, 1); = (1, 2, -3) . Пример. Вычислить площадь треугольника с вершинами А(2, 2, 2), В(4, 0, 3), С(0, 1, 0). (ед2).
Пример. Доказать, что векторы , и компланарны. , т.к. векторы линейно зависимы, то они компланарны.
Пример. Найти площадь параллелограмма, построенного на векторах , если (ед2).
|