КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Понятие об уравнении линии и поверхности. Полярная система координат.Рассмотрим плоскость, на которой геометрическими объектами являются различные линии и требуется изучать их свойства. Для этого введем на плоскости некоторую декартову систему координат и возьмем на некоторой линии L произвольную точку M(xy). Если точку M(xy)перемещать вдоль L, то ее координаты будут меняться, но не произвольно. Между ними существует некоторая связь, которая определяется геометрическими свойствами линии L. Определение. Cвязь y = f(x) или F(xy) = 0 называется уравнением линии L, если этим соотношениям удовлетворяют координаты любой точки линии L и не удовлетворяют координаты точек, не принадлежащих линии L. Таким образом, координаты на плоскости позволяют для каждой линии выписать некоторое уравнение, которое определяется геометрическими свойствами линии, кроме того, оказывается, что каждому уравнению можно поставить в соответствие некоторую линию, и только координаты точек этой линии будут удовлетворять данному уравнению. В связи с этим возникают две задачи. Эти две задачи и составляют предмет аналитической геометрии на плоскости. Если взять трехмерное пространство, то к таким геометрическим объектам, как пространственные линии, добавляются новые геометрические объекты - поверхности в трехмерном пространстве. Поскольку положение точки в пространстве определяется тремя координатами x, y, z, то и условие, которому удовлетворяют все точки, принадлежащие данной поверхности, аналитически выражается уравнением F(x, y, z) = 0. Определение. Уравнение поверхности есть уравнение F(x, y, z) = 0, которому удовлетворяют координаты всех точек данной поверхности, и притом только этих точек. Пространственные линии можно рассматривать как линии пересечения некоторых поверхностей. На случай трехмерного пространства легко перефразируются указанные выше две задачи, которые и будут составлять предмет аналитической геометрии в пространстве. В дальнейшем, множество всех точек плоскости будем обозначать как двумерное пространствоR2, а трехмерное пространство - как пространство R3 . Кроме прямоугольной или декартовой системы координат часто используется полярная система координат. Возьмем на плоскости направленную прямую Ох и на ней точку О (рис. 15). Положение точки М на этой плоскости определяется двумя числами: ее расстоянием r от взятой нами точки О и углом φ, образуемым отрезком ОМ с положительным направлением прямой Ох. Отсчет углов обычно ведется в направлении, противоположном движению часовой стрелки. Числа r и φ называются полярными координатами точки М, причем r называется радиус-вектором, Прямая Ох называется полярной осью, а точка О - полюсом полярной системы координат. Заметим, что r (как расстояние) - всегда величина положительная, а угол φ может изменяться от 0 до 2π и далее до бесконечности. Координатные линии полярной системы суть концентрические окружности с центром в точке О (r =const) и лучи, выходящие из точки О ( φ =const ). Из рис. 16 видно, что если полюс полярной системы совпадает с началом прямоугольной системы координат, а полярная ось - с осью абсцисс, то прямоугольные координаты точки М выражаются через ее полярные координаты следующим образом: Полярные координаты точки М выражаются через ее декартовы координаты такими формулами: Определяя величину φ из (52) и имея в виду, что r > 0, видим, что знак должен быть одинаков со знаком y, а знак - со знаком х. Отсюда по знаку sin φ и cos φ легко установить четверть, в которой лежит искомый угол. 2. Уравнение прямой линии на плоскости: общее, с угловым коэффициентом,
|