Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Окружность, вписанная в треугольник.

Читайте также:
  1. Вопрос № 76 Топография области промежности. Мочеполовой треугольник. Седалищно-прямокишечная ямка. Операции при парапроктитах.
  2. Лопаточно-трапециевидный треугольник. Топография лопаточно-трапециевидного треугольника.
  3. Окружность, описанная около треугольника.

Окружность называется вписанной в треугольник, если она касается всех его сторон.

[П] Теорема о центре окружности, вписанной в треугольник.

Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Дано: АВС — данный треугольник; О — центр вписанной в него окружности; D, Е и F — точки касания окружности со сторонами треугольника (рис. 27).

Доказать: О — точка пересечения биссектрис.

Доказательство. Прямоугольные треугольники AOD иАОЕ равны по гипотенузе и катету. У них гипотенуза ОА — общая, а катеты OD и ОЕ равны как радиусы. Из равенства треугольников следует равенство углов OAD и ОАЕ. А это значит, что точка О лежит на биссектрисе треугольника, проведенной из вершины А. Точно так же доказывается, что точка О лежит на двух биссектрисах треугольника.

[А] Теорема об окружности, вписанной в треугольник.

В любой треугольник можно вписать окружность.



Дано: A ABC — данный треугольник, О — точка пересечения биссектрис, М, L и К — точки касания окружности со сторонами треугольника (рис. 28).

Доказать: О — центр окружности, вписанной в АВС.

Доказательство. Проведем из точки О перпендикуляры OK, OL и ОМ соответственно к сторонам АВ, ВС и СА (см. рис. 28). Так как точка О равноудалена от сторон треугольника ABC, то О К = OL = = ОМ. Поэтому окружность с центром О радиуса ОК проходит через точки K L M. Стороны треугольника ABC касаются этой окружности в точках К, L, М, так как они перпендикулярны к радиусам ОК, OL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в треугольник ABC. Теорема доказана.

Замечание. Отметим, что в треугольник можно вписать только одну окружность. В самом деле, допустим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудален от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают.

 

 

29. Задача по теме «Параллельные прямые».


 

 

30. Задача по теме «Теорема Пифагора».

Докажите, что если диагонали четырехугольника ABCD взаимно перпендикулярны, то

 

 


Дата добавления: 2015-04-21; просмотров: 16; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Свойство медианы равнобедренного треугольника. | Окружность, описанная около треугольника.
lektsii.com - Лекции.Ком - 2014-2019 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты