Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Теорема о средней линии треугольника.




[П] Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине.

Дано: DE — средняя линия треугольника ABC.



Доказательство. Проведем через точку D прямую, параллельную стороне АВ. По теореме Фалеса она пересекает отрезок АС в его середине, т. е. содержит среднюю линию DE. Значит, средняя линия DE параллельна стороне АВ (рис. 53).

Проведем теперь среднюю линию DF. Она параллельна стороне АС. Четырехугольник AEDF — параллелограмм. По свойству параллелограмма ED = — AF, а так как AF = FB по теореме Фалеса, то ED = АВ. Теорема доказана.

 

 

51. Задача по теме «Ромб. Квадрат».


 

 

52. Задача по теме «Равнобедренный треугольник».

На боковых сторонах равнобедренного треугольника во внешнюю сторону построены равносторонние треугольники. Докажите, что отрезки, соединяющие вершины равносторонних треугольников (отличные от вершин равнобедренных треугольников) с серединой основания равнобедренного треугольника, равны.

 

 


Поделиться:

Дата добавления: 2015-04-21; просмотров: 217; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты