Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Теорема о средней линии треугольника.




Читайте также:
  1. I. Решение телеграфных уравнений для линии без потерь
  2. Автоматич. линии; гибкие производственные системы. Их стр-ра, возможности использования в техпроцессах.
  3. Автоматические линии из агрегатных станков.
  4. Бюджетная линия потребителя. Наклон бюджетной линии. Понятие бюджетного множества. Уравнение бюджетной линии.
  5. Бюджетные линии
  6. Верхний край симфиза, дугообразные линии подвздошных костей, крестцовый мыс
  7. Влияние режима линии передачи на КПД и пропускаемую мощность.
  8. Вопрос 21 Теорема Коуза и проблема внешних эффектов (экстерналий). Выводы из теоремы. Российская приватизация в свете теоремы Коуза
  9. Вопрос 26. Теорема Коуза
  10. Вопрос № 11 Топография подподбородочного и поднижнечелюстного треугольника. Вскрытие поднижнечелюстной флегмоны.

[П] Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине.

Дано: DE — средняя линия треугольника ABC.



Доказательство. Проведем через точку D прямую, параллельную стороне АВ. По теореме Фалеса она пересекает отрезок АС в его середине, т. е. содержит среднюю линию DE. Значит, средняя линия DE параллельна стороне АВ (рис. 53).

Проведем теперь среднюю линию DF. Она параллельна стороне АС. Четырехугольник AEDF — параллелограмм. По свойству параллелограмма ED = — AF, а так как AF = FB по теореме Фалеса, то ED = АВ. Теорема доказана.

 

 

51. Задача по теме «Ромб. Квадрат».


 

 

52. Задача по теме «Равнобедренный треугольник».

На боковых сторонах равнобедренного треугольника во внешнюю сторону построены равносторонние треугольники. Докажите, что отрезки, соединяющие вершины равносторонних треугольников (отличные от вершин равнобедренных треугольников) с серединой основания равнобедренного треугольника, равны.

 

 


Дата добавления: 2015-04-21; просмотров: 12; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.016 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты