КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Признак равенства прямоугольных треугольников.
Так как в прямоугольном треугольнике угол между двумя катетами — прямой, а любые два прямых угла равны, то из первого признака равенства треугольников следует, что: если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны. Из второго признака равенства треугольников следует, что: если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны. Рассмотрим еще два признака равенства прямоугольных треугольников: если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. Доказательство. Из теоремы о сумме углов треугольника следует, что в этих треугольниках два других острых угла также равны, поэтому они равны по второму признаку равенства треугольников, т. е. по стороне (гипотенузе) и двум прилежащим к ней углам. [П] Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны.
81. Задача по теме «Векторы».
82. Задача по теме «Окружность, вписанная в треугольник».
Определите вид треугольника, если центр вписанной в него окружности совпадает с центром описанной около него окружности. Решение. Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник, а точка пересечения его серединных перпендикуляров — центром окружности, описанной около этого треугольника. Из теоремы о медиане равнобедренного треугольника следует, что только в равностороннем треугольнике биссектрисы углов треугольника совпадают с серединными перпендикулярами. Значит, центр окружности, вписанной в треугольник, совпадает с центром описанной около него окружности только для равностороннего треугольника.
|