КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Задание множеств. Пустые, равные множества, подмножества.
Задание множества осуществляется либо 1) перечислением элементов, например, А = {1, 2, 3}, 2) либо с помощью характеристического свойства, т.е. свойства, которым обладает каждый элемент множества и не обладают никакие другие, например, В = {х: 1< х < 3}, 3) либо с помощью графического изображения (геометрические фигуры на плоскости) – кругов Эйлера:
Иногда характеристическим свойством не обладает ни один объект множества, что повлекло за собой введение понятия пустого множества. Определение 3. Множество, не имеющее ни одного элемента, называется пустым . Определение 4. Множества А и В называются равными, если состоят из одних и тех же элементов: А = В. В противном случае . Символ «=» равенства множеств обладает свойствами: а) Х = Х – рефлексивность, б) если Х = Y, то У = Х – симметричность, в) если Х = У и У = Z, то Х = Z – транзитивность. Из определения 4 вытекает, что порядок элементов в множестве не существенен. Например, А = {1, 2, 3, 4} и В = {4, 1, 3, 2} – одно и то же множество.
Из определения множества следует, что в нем не должно быть неразличимых элементов, поэтому в множестве не может быть одинаковых элементов. Запись {1, 1, 2, 3} следует рассматривать как некорректную и заменять на {1, 2, 3}. Определение 5. Символ – отношение включения множеств, т.е. если (А включено в В), то каждый элемент множества А является элементом множества В. При этом множество А называется подмножеством, множество В – надмножеством. Если и , то А называется собственным подмножеством В. В этом случае пишут . Пустое множество – подмножество любого множества.
|