Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Супремум и инфимум




Рассмотрим линейное множество.

Определение 31. Множество А называется ограниченным сверху (снизу), если существует число b такое, что для любого элемента выполняется условие: . Число b называется верхней (нижней) гранью множества.

Определение 32. Множество ограниченное и сверху и снизу называется ограниченным.

 

Примеры1) ограниченного множества – (a, b), [a, b], 2) ограниченного сверху множества – (–∞, а], 3) ограниченного снизу множества – (а, ∞).

 

Любое ограниченное сверху (снизу) множество А имеет бесконечно много верхних (нижних) граней, образующих множество чисел, ограничивающих множество А сверху (снизу).

Пусть b – верхняя грань, тогда b/ такое что b/ > b, также верхняя грань.

Определение 33.Наименьшее из чисел, ограничивающих множество А сверху, называется точной верхней гранью множества А или супремумом и обозначается . Наибольшее из чисел, ограничивающих множество А снизу, называется точной нижней гранью множества А или инфимумом и обозначается

Примеры:1) Х = (a, b), тогда = а, 2) А = (а, +∞), тогда = а, не существует.

Теорема 3.Любое непустое ограниченное сверху (снизу) числовое множество имеет точную верхнюю (нижнюю) грань.

 


Поделиться:

Дата добавления: 2015-07-26; просмотров: 207; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты