КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Действия над множествами
1) Подмножество:
Если может быть А = В, то пишут . 2) Объединение множеств: Определение 6.Объединением множествА и В называется множество или . Свойства объединения: а) , б) = А, в) , г) если , то 3) Пересечение множеств: Определение 7.Пересечением множествА и В называется множество и . Свойства пересечения: а) , б) = , в) , г) если , то Определение 8.Два множества называются непересекающимися, если = .
4) Разность множеств:
Определение 9.Разностью множествА и В называется множествоМ,которое содержит всеэлементы А, не входящие в В: и . Свойства разности: а) , б) .
5) Симметрическая разность: А В
Определение 10.Симметрической разностью множествА и В называется множество А В
6) Если все построение происходит на некотором фиксированном множестве U, то U называют универсальным множеством. Его графически удобно изображать в виде множества точек прямоугольника. Дополнениемножества А: Определение 11.Если , то множество элементов , но называется дополнением множества А относительно множества U и обозначается , т.е дополнением множества А называется разность .
|