Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Метод проверки гипотезы о существовании тренда во временном ряду, основанный на сравнении средних уровней ряда




Читайте также:
  1. Cоциологический анализ электорального процесса: проблемы и методы исследования, сферы применения результатов
  2. I. Невербальные методы оценки.
  3. II. 1. Методические указания к выполнению контрольных заданий
  4. II.2. Методика построения напорной и пьезометрической линий
  5. SWOT-анализ и методика его использования. Стратегический анализ, PEST-анализ, SNW-анализ в менеджменте.
  6. А Классификация и общая характеристика основных методов контроля качества.
  7. А) допомозі Німеччини – застосуванню насильницьких методів наведення порядку та дисципліни
  8. А) метод наблюдения
  9. Аварийные переключения, как правило, производятся в ограниченном временном интервале и требуют от персонала четкости, самостоятельности и ответственности при их выполнении.
  10. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции

 

Наличие во временном ряду трендовой компоненты не всегда можно определить с помощью графика. Поэтому для выявления этой компоненты используются специальные критерии проверки гипотезы о существовании тренда во временном ряду.

Рассмотрим следующие критерии проверки гипотезы о существовании тренда во временном ряду:

1) критерий, основанный на сравнении средних уровней временного ряда;

2) критерий «восходящих и нисходящих» серий;

3) критерий серий, основанный на медиане выборочной совокупности.

При проверке гипотезы о существовании тренда во временном ряду с помощью критерия, основанного на сравнении средних уровней, временной ряд из N наблюдений делится на две равные части. Объём первой части yi равен

и объём второй части yj равен

Обе части временного ряда рассматриваются как самостоятельные выборочные совокупности, подчиняющиеся нормальному закону распределения.

Для каждой из выборок yi и yj рассчитываются следующие выборочные характеристики:

1) средние арифметические значения:

2) выборочные дисперсии:

При проверке предположения о наличии во временном ряду трендовой компоненты выдвигается основная гипотеза о равенстве генеральных средних для двух образованных выборочных совокупностей:

H0:μi=μj.

Альтернативной или обратной является гипотеза о неравенстве генеральных средних для двух образованных выборочных совокупностей:

H0:μi≠μj.

Основная гипотеза вида H0:μi=μj проверяется при справедливости предположения о равенстве генеральных дисперсий:

Гипотеза о равенстве дисперсий проверяется с помощью F-критерия Фишера.

Наблюдаемое значение F-критерия сравнивают с критическим значением F-критерия, которое определяется по таблице распределения Фишера-Снедекора.

Критическое значение F-критерия Фишера определяется по таблице распределения Фишера-Снедекора в зависимости от уровня значимости а и двух степеней свободы

k1=n–1 и k2=N–n–2.

Наблюдаемое значение F-критерия при проверке основной гипотезы вида

определяется по формуле:

 

при условии, что

При проверке выдвинутых гипотез возможны следующие ситуации.

Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл>Fкрит , то основная гипотеза отклоняется.



Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т.е. Fнабл≤Fкрит , то основная гипотеза принимается.

Гипотеза о равенстве генеральных средних проверяется с помощью t-критерия Стьюдента.

Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают с критическим значением t-критерия, которое определяется по таблице распределения Стьюдента.

Критическое значение t-критерия tкрит(а,N–2) определяется по таблице распределения Стьюдента, где а – уровень значимости, (N–2 ) – число степеней свободы.

Наблюдаемое значение t-критерия при проверке основной гипотезы вида H0:μi=μj определяется по формуле:

При проверке гипотез возможны следующие ситуации.

Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. tнабл>tкрит , то основная гипотеза отвергается, и генеральные средние двух выборок не равны между собой. Следовательно, в исходном временном ряду присутствует трендовая компонента.



Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т.е. tнабл≤tкрит , то основная гипотеза принимается, и генеральные средние двух выборок равны между собой. Следовательно, в исходном временном ряду отсутствует трендовая компонента.

 

72. Критерий «восходящих и нисходящих» серий. Критерий серий, основанный на медиане выборочной совокупности

 

При использовании для проверки утверждения о присутствии во временном ряду трендовой компоненты критерия «восходящих и нисходящих» серий, против каждого из уровней временного ряда объёмом N ставится знак «+», если данный уровень больше предыдущего, или знак «-», если уровень меньше предыдущего. В результате данной процедуры получаем совокупность знаков объёмом (N-1 ).

Последовательность из знаков «+» или «-» называется серией. Обозначим общее количество серий данного временного ряда как γ . Самую длинную серию из плюсов или минусов обозначим как φ .

Основная гипотеза формулируется как утверждение об отсутствии трендовой компоненты во временном ряду.

Если хотя бы одно из следующих неравенств не выполняется, то основная гипотеза об отсутствии тренда отклоняется.

1)

2) φ набл≤φ0,

где φ0=5, если N<26;

φ0=6, если 26<N<153;

φ0=7, если 153<N<170 .



Гипотеза об отсутствии тренда проверяется при уровне значимости а=0,05 .

При использовании для проверки утверждения о присутствии во временном ряду трендовой компоненты критерия серий, основанного на медиане выборочной совокупности, временной ряд объёмом N ранжируется, т. е. все наблюдения упорядочиваются по возрастанию, и рассчитывается медиана ранжированного ряда.

Медианойназывается наблюдение, которое делит ранжированный временной ряд на две равные части.

Если временной ряд содержит нечётное количество наблюдений, то в качестве медианы принимается значение, стоящее в середине данного ряда.

Если временной ряд содержит чётное количество наблюдений, то в качестве медианы берётся среднее арифметическое значение двух наблюдений, находящихся посередине временного ряда.

Уровни исходного временного ряда сравниваются с медианой по следующему принципу:

1) если уровень временного ряда больше медианы, то ему приписывается знак «+»;

2) если уровень временного ряда меньше медианы, то ему приписывается знак «-».

Обозначим общее количество серий данного временного ряда как γ . Самую длинную серию из плюсов или минусов обозначим как φ .

Основная гипотеза формулируется как утверждение об отсутствии трендовой компоненты во временном ряду.

Если хотя бы одно из следующих неравенств не выполняется, то основная гипотеза об отсутствии тренда в изучаемом временем ряду отклоняется:

Гипотеза об отсутствии тренда проверяется при уровне значимости а=0,05 .

 


Дата добавления: 2015-04-18; просмотров: 9; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.015 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты