КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Распределение частиц по поверхности, микроанализ и объемный анализ
Рентгеновский микроанализ открыл путь для диагностики твердых тел и до сегодняшнего дня остается важнейшим методом такого анализа. Создание приборов ВИМС типа масс-спектральнаго микроскопа и растрового микрозонда расширило возможности микроанализа твердого тела, позволив достичь большей чувствительности, проводить изотопический и поверхностный анализ и обнаруживать присутствие элементов с малыми Z. Масс-спектральные микроскопы дают качественную, а при некоторых условиях и количественную информацию о распределении элементов по поверхности образца. Они применяются при изучении выделений на границах зерен, различных эффектов и поли- и моно-кристаллах, диффузии (двумерного распределения в плоскости поперечных шлифов), фазового состава минералов и распределения поверхностных загрязнений. Методом ВИМС проводится анализ двоякого рода: определение общего состава в объеме твердого тела и определение состава в отдельных его точках (т. е микрообластях диаметром менее 25 мкм). Микроанализ методом ВИМС проводился для определения следов различных элементов, содержащихся в тех или иных зернах минералов, изотопического анализа РЬ in situ в ореоле радиоактивных включений (диаметром 1 - 2 мкм), элементного анализа взвеси и определения возраста некоторых фаз в минералах по отношению 207Pb/206Pbи рубидиево-стронциевым методом. Анализ активных газов (таких, как Н2, N2, О2) в металлах этим методом сопряжен с известными трудностями. Пока что нет такого метода, который полностью удовлетворял бы всем запросам всех исследователей, имеющих дело с поверхностью. Метод ВИМС не является исключением в этом отношении, но он занимает особое положение в области анализа состава объема и поверхности твердого тела, т. к. в ряде других отношений с ним не могут сравниться никакие другие методы. Высокочувствительность к большинству элементов, возможность регистрации атомов с малыми Z и изотопического анализа, высокое разрешение по глубине при измерении профилей концентрации и возможность изучения распределения элементов по поверхности делают ВИМС методом трехмерного анализа изотопного и следового состава твердого тела (рис. 14).
Рис.4.14. Влияние анализируемой площади на предельную разрешающую способность[2].
Многие задачи физики поверхности могут быть решены качественными или полуколичественными методами, поэтому, не очень высокая точность количественных оценок, обеспечиваемая методом ВИМС, с лихвой компенсируется той ценной качественной информацией, которую он дает. ВИМС уже оказал большое влияние на микроанализ твердых тел в направлениях, имеющих как фундаментальное, так и прикладное значение. Дальнейшее развитие метода ВИМС должно быть направлено, главным образом, на решение проблемы количественного анализа и отыскания путей повышения его точности.
[1] Спектр эмиссии рентгеновских квантов является характеристичным и может быть использован для химического анализа; соответствующий метод называют рентгеновской эмиссионной спектроскопией [2] На этом эффекте основан один из основных механизмов формирования контраста в растровой электронной микроскопии [3] Метод РФЭС также называют электронной спектроскопией для химического анализа (ЭСХА) [4] Это обстоятельство существенно при анализе полупроводниковых материалов, поскольку Ge, Si и другие практически важные полупроводники окисляются на воздухе
5. Инфракрасная Фурье-спектрометрия
Для измерения толщины эпитаксиальных слоев большое развитие получил метод Фурье-спектрометрии, основанный на использовании интерферометра Майкельсона. Этот метод имеет ряд преимуществ перед традиционным методом спектральной интерференции, может быть применен к широкому классу полупроводниковых структур. Принцип действия интерферометра Майкельсона, позволяющего наблюдать оптическую разность хода по интерференции двух составляющих расщепленного луча, используется, например, в широко применяемом микроскопе МИИ – 4 для контроля толщины тонких пленок на отражающих покрытиях.
|