![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Производные неявных функцийРанее было введено понятие неявной функции одного аргумента в неявном виде, т.е. уравнением F(x;y)=0. Однако там же указывалось, что не всякое уравнение F(x;y)=0 определяет функцию y=f(x). Теорема (достаточные условия существования неявной функции). Пусть : 1. F(x;y) определена и непрерывна как функция двух переменных вместе со своими частными производными в некоторой окрестности точки Мо(хо;уо); 2. В точке Мо(хо;уо) имеет место равенство F(хо;уо)=0, 3. В точке Мо F’x(хо;уо) не равна нулю; тогда: a. В некотором прямоугольнике D b. При х= хо функция y=f(x) принимает значение уо ; c. На промежутке Доказательство опускаем. Получим только формулу для вычисления производной. Пусть в D имеет место F(x;y)=0 и потому dF=0. Но dF= F’x(х;y)dх+F’у(х;y)d у. И потому имеем y`= Комментарий. Следует заметить, что фактической функции y=f(x) можно и не получить вообще, т.к. не всякое уравнение F(x;y)=0 можно решить относительно у. И все же производную вычислить можно! Обобщим полученное на неявную функцию трех переменных. Получим для задания функции в виде F(x;y;z)=0 формулы для частных производных: dz= Используем производную неявной функции для получения характеристик градинта поля. Пусть дана z=f(x;y) . И пусть дана некоторая линия уровня z=C. Пусть Мо лежит на линии уровня. Тогда можно найти угловой коэффициент касательной к линии уровня в точке Мо, используя производную неявно заданной функции k= y`= grad f(x;y)= f’x(х;y) Т.о. градиент – это вектор, нормальный к линии (поверхности) уровня, проведенной через данную точку. Он указывает направление наибольшего увеличения поля.
|