Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Уравнение Бернулли для идеальной жидкости




Читайте также:
  1. W (живое сечение) – поверхность в пределах потока жидкости, проведенная перпендикулярно направлению струек.
  2. Адиабатный процесс. Уравнение адиабаты идеального газа. Работа идеального газа при адиабатическом изменении его объема.
  3. Аномально-вязкие нефти. Структурированные (неньютоновские) жидкости.
  4. АППАРАТУРА ДЛЯ РАСПРЕДЕЛЕНИЯ И НАПРАВЛЕНИЯ ПОТОКОВ РАБОЧЕЙ ЖИДКОСТИ
  5. БЕЗНАПОРНОЕ ДВИЖЕНИЕ ЖИДКОСТИ В ПОРИСТОЙ СРЕДЕ
  6. Бюджетная линия потребителя. Наклон бюджетной линии. Понятие бюджетного множества. Уравнение бюджетной линии.
  7. Вакуумметрическое давление в насосе при всасывании жидкости
  8. Величина гидростатического давления в случае жидкости, находящейся под действием только силы тяжести.
  9. Виды движения жидкости
  10. Виды движения жидкости

Представим поток идеальной жидкости конечных размеров и выберем в нем произвольные сечения 1 и 2 (рис. 8.2). Вместе с жидкостью, протекающей за единицу времени через сечение 1, вносится энергия

E1= , (8.6)

где – весовой расход жидкости в этом сечении, причем ;
– расход (объемный) через сечение 1. Энергия, уносимая жидкостью, вытекающей за единицу времени через сечение 2, равна

E2= . (8.7)

При установившемся течении расход в любом сечении потока постоянный, т.е. . В случае идеальной жидкости, когда трение полностью отсутствует, полная энергия жидкости между сечениями 1 и 2 сохраняет свою величину постоянной независимо от времени, поэтому выполняется условие

E1=E2

и, следовательно

. (8.8)

Последнее равенство следует из закона сохранения энергии: полная механическая энергия потока идеальной жидкости в любом сечении принимает одинаковые значения. Линия полной энергии на рис. 8.2 представляет горизонтальную линию. Ниже приводятся примеры применения уравнения Бернулли.

Задача 8.1. Поток переходит из узкого сечения трубы в широкое. Определить, в каком сечении - узком или широком - давление больше. Жидкость считать идеальной.

Решение. Представим трубу горизонтальной (рис. 8.3), выберем два сечения 1-1 и 2-2 и плоскость отсчета, совпадающую с осью трубы. Уравнение Бернулли для данного случая ( ) преобразуется так

или

.

Очевидно, что (как следует из уравнения нераз- Рис. 8.3

рывности) и правая часть больше нуля. Следовательно, и левая часть последнего равенства положительна, поэтому - давление в широкой части трубы больше.

Этот результат можно получить и другим путем. Считая жидкость идеальной, мы уверены, что происходит лишь превращение одного вида механической энергии в другой (без перехода в тепло). Кинетическая энергия жидкости при переходе от сечения 1-1 к сечению 2-2 уменьшается. Следовательно, потенциальная энергия возрастает и > .Если представить поток в трубе, как показано на рис. 8.4, то в узком сечении дав- Рис. 8.4

ление будет меньше, чем в широком. Если к тому же жидкость вытекает в атмосферу, то давление в узком сечении меньше атмосферного и жидкость в трубке поднимается. Поднятие жидкости из бачка – признак того, что в узком сечении потока вакуум; таким образом, устройство на рис. 8.4 является простейшим насосом. В технике явление образования вакуума в узком сечении используется в водоструйных и пароструйных насосах (инжекторах). Необходимо заметить, что в узком сечении давление может быть во много раз больше атмосферного и рассмотренный нами процесс основан именно на том, что в широком сечении, расположенном вблизи узкого, давление равно атмосферному.



Задача 8.2. Определить скорость истечения жидкости из отверстия в открытом сосуде, рис. 8.5.

Решение. Если сосуд широкий, отверстие малое, то скорости внутри сосуда вдали от отверстия малы. Поэтому можно применить уравнение Бернулли (8.8) по всему потоку в целом и рассматривать его как один «поток». В верхнем сечении сосуда («потока») – у поверхности жидкости - давление равно атмосферному, а скорость . В нижнем сечении «потока» в отверстии – давление также равно атмосферному.

Если скорость в отверстии обозначить через V , то из (8.8) для этих двух сечений получим

или

, (8.9)

где h – высота уровня жидкости в сосуде.

Истечение происходит с той же скоростью,

Рис. 8.5 какую имело бы всякое тело при свободном падении с высоты h (без учета сопротивления воздуха).



 


Дата добавления: 2015-04-18; просмотров: 15; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты